Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лекция 26. Обзор численных методов решения задачи Коши для обыкновенных дифференциальных уравнений




 

Будем рассматривать схемы численных методов для уравнения первого порядка

.

Это – самый простой случай, но к нему по аналогии сводятся схемы методов для системы дифференциальных уравнений и для дифференциального уравнения n- го порядка.

 

Методы, основанные на разложении функции в ряд Тейлора.

 

Запишем разложение функции в ряд Тейлора в окрестности точки

Рассмотрим равномерную сетку по

Пусть , тогда разложение функции в ряд Тейлора можно записать в виде

, где

Подставим в из дифференциального уравнения

Тогда

.

Это – основная расчетная формула.

Учитывая в слагаемые с производными высших порядков, получим более точные приближенные формулы.

Если взять , то получим метод Эйлера

 

Методы Рунге – Кутта.

 

Основная идея методов Рунге – Кутта – вместо вычисления производных высших порядков в вычислять значения функции в некоторых точках, отличных от .

Выберем

=

Разложим по h

= + =

 

Сравним с приведенной выше основной расчетной формулой

.

и определим коэффициенты

.

Пусть , тогда .

Если . Тогда

.

= .

Это – метод Хойна.

Если в формуле . выбрать ,

то получим явный m – шаговый (m – точечный) метод Рунге – Кутта.

Наиболее распространен явный четырехточечный метод Рунге – Кутта

В явных методах Рунге – Кутта значения вычисляются только по предыдущим значениям .

В неявных методах Рунге – Кутта значения вычисляются как по предыдущим , так и по последующим значениям . Поэтому в этих методах приходится еще решать систему уравнений относительно .

 

Неявный m – шаговый метод Рунге – Кутта можно записать в виде

.

,

 

 

Методы Адамса.

Идея методов Адамса – использовать не промежуточные вычисления значений правой части дифференциального уравнения внутри отрезка , а значения правой части на предыдущих шагах (сделать метод методом «с памятью»).

В формуле заменим интерполяционным полиномом Ньютона .

 

Явные методы Адамса (Адамса – Башфорта).

Возьмем , но интеграл будем брать по предыдущему отрезку . Тогда

Здесь - конечная разность - го порядка:

Подставляя эти разности, получим

(k – шаговый явный метод Адамса – Башфорта)

Пример. Получен явный метод Адамса – Башфорта второго порядка ( двухшаговый )

.

Более точен метод Адамса – Башфорта четвертого порядка:

Заметим, если задано (в задаче Коши начальное условие задается), то для того, чтобы начал работать метод Адамса 4 порядка, нужно вычислить еще значения (каким-либо другим методом) . Тогда из системы формул Адамса Башфорта, выписанных для , вычисляются значения правых частей , необходимые для того, чтобы метод начал работать. Затем уже по этим значениям по формуле метода определяются .

Эта процедура называется «разгоном метода» и является обязательной в методах Адамса.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1180 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2307 - | 2123 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.