Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Функція називається неперервною в точці , якщо для будь-якої послідовності відповідна послідовність значень збігається до




Функція називається неперервною в точці ,якщодля довільного числа існує число таке, що для всіх , які задовольняють умову , виконується нерівність .

Наведені означення рівносильні.

Функція називається неперервною в точці справа (зліва), якщо .

Отже, функція неперервна в точці , якщо вона неперервна в цій точці як справа, так і зліва.

Покажемо, що неперервна функція характеризується тим, що нескінченно малому приростові аргументу відповідає нескінченно малий приріст функції .

Дійсно, умову можна записати як . Тоді

 

.

 

Отже, можна дати наступне означення неперервності функції в точці . Функція називається неперервною в точці , якщо нескінченно малому приростові аргументу в цій точці відповідає нескінченно малий приріст функції.

Уведене поняття неперервності функції є локальною (місцевою) властивістю. Якщо функція неперервна в кожній точці інтервалу , то говорять, що вона неперервна на інтервалі . Якщо при цьому в точці функція неперервна справа, а в точці – неперервна зліва, то говорять, що функція неперервна на відрізку .

Зауважимо, що термін неперервної кривої походить із поняття неперервної функції. Графіком неперервної на функції є неперервна крива ("суцільна крива").

Операції над неперервними функціями

Теорема. Якщо функції неперервні в точці , то функції у точці також неперервні.

Доведення цієї теореми безпосередньо випливає з означення неперервності функції в точці та властивостей границь.

 

Теорема (про неперервність складеної функції). Якщо функція неперервна в точці , а функція неперервна в точці , причому , то складена функція неперервна, як функція від , у точці .

Доведення. Нехай задано довільне число . Тоді за неперервністю функції у точці знайдеться число таке, що для всіх , які задовольняють умову .

Для числа за неперервністю функції у точці знайдеться число таке, що для всіх , які задовольняють умову .

Отже, для довільного числа знайдеться число таке, що з умови випливає нерівність , а це означає, що функція неперервна в точці .

Можна довести, що всі елементарні функції в області їх визначення неперервні.

Звернемо увагу на те, що з означення неперервності функції у точці випливає

.

Наведемо приклади деяких важливих границь, обчислення яких спирається на неперервність елементарних функцій.

1) .

 

Доведення.

.

Якщо , то маємо: , тобто при виконується .

2) .

Доведення. Покладемо . Тоді . Якщо , то і .

 

.

Якщо , то маємо: , тобто при справедливо .

3) .

Доведення. Покладемо . Якщо , то і .

Далі . Звідси маємо: . Тоді

 

 

Розглянемо степенево-показниковий вираз . Нехай . Запишемо

 

.

 

Оскільки , то . Звідси маємо

.

 

Зазначимо, що вирази є не визначеними. Для знаходження відповіді на питання, що є границею виразу , у цих випадках недостатньо знати лише границі функцій , потрібно знати закон, за яким вони прямують до своїх границь.

 

3. Класифікація точок розриву функції.





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 531 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2611 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.