Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Граничний перехід у нерівностях




 

Теорема. Якщо елементи збіжної послідовності , починаючи з деякого номера , задовольняють нерівність , то і границя цієї послідовності задовольняє нерівність .

Доведення. Нехай, починаючи з деякого номера , елементи збіжної послідовності задовольняють нерівність і . Припустимо, що . Оскільки , то для існує номер такий, що для виконується нерівність , яка рівносильна нерівності . Тоді із нерівності одержуємо: , що суперечить умові. Отже, .

Випадок доводиться аналогічно.

Наслідок 1. Якщо елементи збіжних послідовностей і , починаючи з деякого номера , задовольняють нерівність , то .

Нехай, починаючи з деякого номера, виконується нерівність . Тоді для таких . Отже, , а тому . Звідси маємо . Другий випадок установлюється аналогічно.

Теорема. Нехай члени послідовностей , , , починаючи з деякого номера, задовольняють нерівність і . Тоді послідовність збіжна й .

Доведення. Задамо довільне число . Тоді для заданого знайдеться такий номер , що для виконуватиметься нерівність , тобто . Для цього ж знайдеться такий номер , що для , тобто .

Виберемо . Тоді виконуватиметься нерівність

 

 

для всіх .

Ураховуючи умову теореми, маємо

або , тобто для всіх . Звідси випливає, що .

 

 

Монотонні послідовності

 

 

Послідовність називається неспадною (незростаючою), якщо виконується нерівність для усіх .

Неспадні та незростаючі послідовності називаються монотонними.

Якщо для всіх членів монотонної послідовності виконується строга нерівність , то послідовність називається зростаючою (спадною). Зростаючі та спадні послідовності називаються також строго монотонними.

З означення випливає, що монотонні послідовності обмежені принаймні з однієї сторони: неспадна обмежена знизу, а незростаюча – зверху.

Теорема. Монотонна обмежена послідовність збіжна.

Доведення. Розглянемо випадок неспадної послідовності .

Отже, нехай для усіх виконуються наступні умови:

1) ;

2) існує таке число , що .

Розглянемо числову множину , яка складається з усіх елементів послідовності . За умовою ця множина непорожня і обмежена зверху, а тому має точну верхню межу.

Позначимо . Покажемо, що .

Оскільки - точна верхня межа елементів послідовності , то, згідно з властивістю точної верхньої межі, для будь-якого існує номер такий, що . Так як послідовність неспадна, то при виконується нерівність . З іншого боку, згідно з означенням точної верхньої межі, для всіх . Таким чином, при маємо нерівність , тобто при . Отже, .

Для випадку незростаючої послідовності доведення аналогічне.

*** Із теорем 2.5** і 2.8** випливає, що обмеженість монотонної послідовності є необхідною і достатньою умовою її збіжності.

 

 

Число е

 

Розглянемо послідовність з загальним членом . Покажемо, що ця послідовність є збіжною. Для цього спочатку установимо, що вона зростаюча, а потім – що вона обмежена.

Згідно формули бінома Ньютона

 

Подамо цей вираз у наступному вигляді

 

(3)

 

Так само одержуємо

 

.

 

При виконується нерівність , тому , тобто послідовність зростаюча.

Оскільки кожний вираз, який стоїть у дужках у формулі (3) менший від одиниці і при , то

 

.

 

За формулою суми нескінченно спадної геометричної прогресії маємо

.

 

Отже, послідовність обмежена. Таким чином, послідовність із загальним членом збіжна. За означенням границю цієї послідовності позначають буквою , тобто

 

.

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 972 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2597 - | 2276 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.