Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Границя функції. Означення границі функції за Гейне й за Коші




 

 

Нехай функція визначена на множині і точка є граничною точкою множини . Виберемо із послідовність точок, відмінних від : збіжну до . Значення функції в точках цієї послідовності також утворюють числову послідовність .

 

Означення границі функції за Гейне. Число називається границею функції у точці (або при ), якщо для будь-якої збіжної до послідовності значень аргументу , відмінних від , відповідна послідовність значень функції збігається до числа .

Символічно це записують так: .

Означення границі функції за Коші. Нехай функція визначена в деякому околі точки , крім, можливо, самої точки . Число називається границею функції у точці , якщо для довільного числа існує число таке, що нерівність виконується для всіх , що задовольняють умову .

Означення границі функції за Гейне і за Коші еквівалентні.

Дійсно, нехай згідно з Гейне. Покажемо, що в цьому випадку для довільного числа існує число таке, що нерівність виконується для всіх , що задовольняють умову , тобто що згідно з означенням Коші.

Припустимо протилежне. Нехай існує таке, що для довільного існує точка , для якої з умови випливає нерівність . Розглянемо послідовність , де . Виберемо точки такі, що

 

(1)

і

. (2)

 

Оскільки , то , але за нерівністю (2) , що суперечить умові, тобто що згідно з Гейне.

Нехай тепер згідно з Коші. Покажемо, що і згідно з Гейне.

Отже, нехай для будь-якого існує число таке, що із нерівності випливає нерівність . Виберемо довільну послідовність точок збіжну до . Тоді для значення , відповідного , знайдеться такий номер , що для всіх виконуватимуться нерівності і разом із тим . Оскільки вибір був довільним, то це означає, що для довільної послідовності із умови випливає умова , тобто що за Гейне.

Еквівалентність означень границі функції за Гейне і за Коші дає можливість використовувати будь-яке із них залежно від того, яке є більш зручним для розв'язування тієї чи іншої задачі.

 

 

Односторонні границі

 

 

Число називається границею функції у точці справа (зліва), якщо для будь-якої збіжної до послідовності , елементи якої більші (менші) , відповідна послідовність збігається до числа .

Символічно це записують так:

 

.

 

Можна дати рівносильне означення односторонніх границь функції "в термінах ".

Число називається границею функції у точці справа (зліва), якщо для довільного числа існує таке , що для всіх , які задовольняють умову , виконується нерівність .

 

Теорема. Функція має в точці границю тоді й тільки тоді, коли в цій точці існує як права, так і ліва границя та ці границі рівні між собою. У цьому випадку границя функції дорівнює одностороннім границям.

Доведення. Нехай у точці існують односторонні границі функції і . Тоді, згідно з означенням односторонніх границь, для будь-якого існують числа , такі, що для всіх , які задовольняють умову , і для всіх , котрі задовольняють умову , виконується нерівність . Виберемо . Тоді для всіх , що задовольняють умову , виконуватиметься нерівність . Тобто . З іншого боку, якщо , то в точці існують односторонні границі й .





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 1101 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2446 - | 2243 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.