Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Інтерпретація множини дійсних чисел




 

Розглянемо пряму з фіксованою точкою − початком координат. Нехай задана одиниця виміру. Тоді множину дійсних чисел можна поставити у взаємно однозначну відповідність із точками прямої: точці , яка лежить справа від точки , поставимо у відповідність число , рівне довжині відрізка . Тоді , яка лежить зліва від точки , число , де – довжина відрізка , а точці – число 0. Число , яке відповідає точці , називається координатою точки . Пряма з описаними властивостями називається числовою прямою. Отже, кожній точці числової прямої відповідає дійсне число – її координата. Має місце й обернене твердження: кожному дійсному числові відповідає деяка точка числової прямої, а саме точка , координата якої . При так установленій відповідності між дійсними числами і точками прямої нерівність рівносильна тому, що точка з координатою лежить зліва від точки з координатою . Отже, можна говорити про ізоморфізм множини дійсних чисел і множини точок числової прямої, тобто що числова пряма є моделлю множини дійсних чисел.

Надалі, говорячи про дійсні числа, замість слова "число" іноді вживається слово "точка". У зв'язку з цим числові множини ще називають точковими.

Використовуючи аксіому неперервності множини дійсних чисел, можна встановити, що множина дійсних чисел, яка задовольняє умову , є незчисленною. Говорять, що ця множина має потужність континууму. Із цього випливає, що множина всіх дійсних чисел незчисленна. Можна також довести, що множина раціональних чисел зчисленна. Отже, множина ірраціональних чисел незчисленна, оскільки вона є множиною (якби множина ірраціональних чисел була зчисленною, то і множина була б зчисленною, оскільки ).

 

 

Найбільш вживані числові множини

 

 

Нехай . Будемо використовувати наступні позначення:

 

відрізок,

інтервал,

півінтервал,

півінтервал.

 

Указані множини ще називають проміжками. Ми розглядатимемо також і нескінченні множини, використовуючи для цього символи .

 

 

Околом точки називається довільний інтервал , який містить точку , тобто .

Інтервал називається околом точки . Точка називається центром цього околу, а число його радіусом. Зазвичай так позначають околи з центром у точці і дуже малим радіусом, тобто коли досить мале.

 

 

Межі числових множин

 

 

Нехай задано непорожню числову множину .

Множина називається обмеженою зверху, якщо існує таке дійсне число , що для кожного виконується нерівність

Множина називається обмеженою знизу, якщо існує таке дійсне число , що для кожного виконується нерівність

При цьому числа і називаються відповідно верхньою та нижньою межею множини .

Множина, яка обмежена зверху й знизу, називається обмеженою.

Очевидно, що будь-яка обмежена зверху (знизу) множина має безліч верхніх (нижніх) меж.

Найменша верхня межа обмеженої зверху множини називається точною верхньою межею або верхньою гранню цієї множини і позначається (supremum (лат.) – найвище).

Найбільша нижня межа обмеженої знизу множини називається точною нижньою межею або нижньою гранню цієї множини і позначається (infimum (лат.) – найнижче).

Якщо , то для довільного числа існує таке, що . Якщо , то для довільного числа існує таке, що .

Теорема. Будь-яка непорожня обмежена зверху числова множина має точну верхню межу. Якщо ж вона обмежена знизу, то має точну нижню межу.

Доведення. Нехай – непорожня обмежена зверху числова множина. Тоді множина чисел, які обмежують зверху, непорожня. Із означення верхньої межі випливає, що виконується нерівність . За аксіомою неперервності дійсних чисел існує таке число , що виконується нерівність .

Із цієї нерівності випливає, що обмежує зверху, тобто є верхньою межею, і є найменшим із усіх верхніх меж, тобто є точною верхньою межею.

Друга частина теореми доводиться аналогічно.

Якщо множина не обмежена зверху (знизу), то за домовленістю пишуть .

 

 

Абсолютна величина числа

 

 

Абсолютноювеличиною (модулем) числа називається саме число , якщо , число – , якщо .





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 918 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2456 - | 2381 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.