Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Карбоновые кислоты: классификация, строение, номенклатура, изомерия и основные методы синтеза. Оптическая изомерия на примере оксикислот




Карбоновыми кислотами называются соединения, содержащие карбоксильную группу cooh

Классификация. По числу карбоксильных групп карбоновые кислоты делят на монокарбоновые, или одноосновные (одна группа -СООН), дикарбоновые, или двухосновные (две группы -СООН) и т.д. В зависимости от строения углеводородного ради­кала, с которым связана карбоксильная группа, карбоновые кислоты бывают алифатическими (например, уксусная или акриловая), алициклическими (например, циклогексанкарбоновая) или ароматическими (бензойная, фталевая). В таблице указаны некоторые представители карбоновых кислот.

Формула Систематическое Название Тривиальное Название
Монокарбоновые кислоты
HCOOH метановая муравьиная
CH3COOH этановая уксусная
C2H5COOH пропановая пропионовая
C6H5COOH бензойная -
CH3(CH2)16COOH октадециловая стеариновая
CH2=CH-COOH пропеновая акриловая
Дикарбоновые кислоты
HOOC-COOH этандиовая щавелевая
HOOC-CH2-COOH пропандиовая малоновая
HOOC-CH2CH2-COOH бутандиовая янтарная
бензол-1,2- дикарбоновая фталевая
бензол-1,4- дикарбоновая терефталевая

Если в углеводородном радикале карбоновых кислот атом (атомы) водорода замещен на другие функциональные группы, то такие кислоты называются гетерофункционапьными. Среди них различают галогенкарбоновые (например, CH2Cl—COOH), нитро-кислоты (например, NO2—С6Н4СООН), аминокислоты, оксикислоты (например, молочная СН3—СН(ОН)—СООН) и др.

Карбоновые кислоты с числом атомов углерода выше 6 называют высшими (жирными) кислотами. Название "жирные" эти кислоты получили потому, что большинство из них могут быть выделены из жиров.

Строение. Карбоксильная группа СООН состоит из карбо­нильной группы С=О и гидроксильной группы ОН. Свойства карбоксильной группы отличаются от свойств составляющих ее групп, которые оказывают взаимное влияние друг на друга. В группе СО атом углерода несет частичный положительный заряд и притягивает к себе неподеленную электронную пару атома кислорода в группе ОН. При этом электронная плотность на атоме кислорода уменьшается, и связь О-Н ослабляется:

В свою очередь, группа ОН "гасит" положительный заряд на группе СО, которая из-за этого теряет способность к реакциям присоединения, характерным для карбонильных соединений.

Номенклатур а. В основе названий карбоновых кислот лежат названия соответствующих углеводородов. Наличие карбоксильной группы отражается окончанием -овая кислота. Низшие карбоновые кислоты часто имеют тривиальные названия: муравьиная, уксусная, масляная и др.

Углеводородную цепь нумеруют начиная с атома углерода карбоксильной группы, например:

2-хлор-5-метилгептановая кислота

CH3—CH=CH—COOH

бутен-2-овая кислота

Часто карбоксильную группу рассматривают как заместитель в молекуле углеводорода. При этом в названии употребляют словосочетание "карбоновая кислота" и в нумерацию атомов углерода цепи атом углерода карбоксильной группы не включают:

9 8
СН3(СН2)7СН=СН(СН2)7СООН

Гептадецен-8-карбоновая (олеиновая) кислота

Названия дикарбоновых кислот производят от названия соответствующего углеводорода с добавлением суффикса "диовая" и слова "кислота". Например, этандиовая (щавелевая) кислота (НООС-СООН).

Общепринятым методом синтеза карбоновых кислот является окиcление первичных спиртов или альдегидов. Однако прямое окисление первичных спиртов хромовой кислотой зачастую дает плохие выходы [2], так как и образующегося в качестве промежуточного соединения альдегида и не прореагировавшего спирта может получиться полуацеталь, который очень быстро окисляется в эфир. Прямое окисление пероксидом никеля осуществляется без подобных осложнений. Однако при окислении алифатических спиртов наблюдается падение выхода при уменьшении их растворимости в воде. Следовательно, во многих случай более предпочтительно окисление хлорохроматом пиридиния в альдегиды, а затем перманганатом калия в присутствии катализатора межфазного переноса или оксидом хрома (VI) в кислоты. Аллиловые спирты очень легко окисляются оксидом серебра (II) в присутствии цианид-ионов в a,b-ненасыщенные карбоновые кислоты. С хорошими выходами осуществляется озонолиз циклических ацеталей в эфиры карбоновых кислот. Окисление метил- или алкилароматических соединений, содержщих a-Н (PhCHR2 –> PhCOOH), перманганатом калия в щелочной среде позволяет получать ароматические карбоновые кислоты. С этим способом сравнимо радикальное хлорирование метилароматических соединений в трихлорметилароматические производные с последующим их гидролизом (PhCH3 –> PhCCl3 –> PhCOOH). В синтезе карбоновых кислот большое значение приобрели методы введения карбоксильной группы в качестве С1-единицы при взаимодействии металлоорганических соединений (например, реактив Гриньяра) с твердым диоксидом углерода и замещение галогеналканов цианидом натрия с образованием нитрилов и последующим их гидролизом. С хорошим выходом протекает и карбоксилирование метилмагнийкарбонатом СН-кислотных кетонов в a-положение с образованием b-кетокарбоновых кислот (осторожно! при выделении продукты легко декарбоксилируются!). Интересным вариантом является прямое карбоксилирование трианионов 2,4,6-трикетосоединений в положение 1 с образованием поли-b-кетокислот. Кетоны и олефины можно превратить в карбоновые кислоты путем расщепления С–С-связи. Так, например, окисление циклогексанона перманганатом калия дает адипиновую кислоту. Окислением циклических олефинов перманганатом калия в присутствии катализатора межфазного переноса при определенных условиях можно получить 1,2-диолы илиa,w-биальдегиды. Если кетоны вводят в реакцию с надкислотами, то в результате перегруппировки получают эфиры карбоновых кислот (окисление по Байеру-Виллигеру). При взаимодействии метилкетонов с галогенами (Х2) в щелочной с отщеплением метильной группы (в виде СНХ3) образуются соответствующие карбоновые кислоты (галоформная реакция). В качестве промежуточного соединения образуется a-тригалогенметил кетон (R–СО–СН3 –> R–СО–СХ3 –> R–COOН + СНХ3). Арилкетоны, вступая в реакцию с морфолинполисульфидом с пoследующим гидролизом, дают фенилалкил-w-карбоновые кислоты с сохранением углеродного скелета. Особенно элегантно протекает превращение алкиларилкетонов в производное арилуксусной кислоты под действием нитрата таллия (III) на носителе. В щелочной среде 1,2-дикетоны подвергаются бензильной перегруппировке (R–CO–CO–R –> RRC(OH)–COOH). Синтетический интерес представляет также превращение в монооксим с последующей перегруппировкой по Бекману. Расщепление 1,3-дикарбоновых соединений и перегруппировка Фаворского также пригодны для синтеза карбоновых кислот. Постоянно возрастает и количество гетероциклов, привлекаемых для синтеза (в особенности для энантиоселективного) замещенных карбоновых кислот. Кроме того, карбоновые кислоты получают гидролизом хлорангидридов и ангидридов кислот, сложных эфиров и амидов. Но сами эти соединения чаще всего получают из карбоновых кислот. Синтетическое значение имеет ферментативный гидролиз диэфиров мезомерных дикарбоновых кислот с образованием энантиомерно чистых соединений (например, с использованием эстеразы из свиной печени). Гидролиз Окисление Карбоксилирование и карбоксиметилирование металлорганических соединений Конденсация Щелочное расщепление Замещение и присоединение Перегруппировки

 

При рассмотрении карбоксильной группы как заместителя, название двухосновной кислоты производят от названия углеводородного радикала с добавлением словосочетания "дикарбоновая кислота". Например, малоновую кислоту (НООС-СН2-СООН) называют метандикарбоновой кислотой.

Оптическая изомерия, в которой изомеры имеют совершенно одинаковые физические и химические свойства, поворачивают плоскость поляризации света на равный угол, но (!) в противоположных направлениях. Так, например, 2-оксипропановая (молочная) кислота имеет два изомера:

Такие изомеры являются зеркальным отражением друг друга и при вращении молекулы не могут быть совмещены. Необходимо обратить внимание на то, что центральный атом углерода в этих молекулах окружен четырьмя разными заместителями. Такой атом углерода называется асимметрическим, и наличие его в молекуле является непременным признаком того, что для этой молекулы существует оптический изомер.

___
Оптические изомеры

Еще один вид изомерии возникает в том случае, когда в молекуле имеется хиральный центр или молекула в целом является хиральной. Хиральность (от греч. cheir - рука) служит причиной образования структур, которые нельзя совместить, поскольку они являются зеркальными изображениями друг друга (зеркальная изомерия). Наиболее частая причина хиральных свойств - присутствие асимметрического атома углерода, т. е. атома с четырьмя различными заместителями. В этом случае образуются две формы (энантиомеры) с различной конфигурацией. Чаще всего энантиомеры носят название L- и D-формы. Для указания абсолютной конфигурации асимметрического атома пользуются R/S-номенклатурой.

Энантиомеры имеют очень близкие химические свойства. Основное различие между ними состоит в том, что они вращают плоскость поляризованного света в противоположных направлениях. Это справедливо и в отношении молочной кислоты. Правовращающая L-молочная кислота встречается в мышцах и крови животных, а продуцируемая микроорганизмами D-форма может быть обнаружена, например, в молочных продуктах. Соединения, имеющие хиральные центры, часто изображают с помощью фишеровских проекций.

ИЗОМЕРИЯ ОКСИКИСЛОТ2. Изомерия углеродного скелета СН3СН3− С−СООН α−оксиизомасляная кислота ОН СН3ОН−СН3−СН−СООН β −оксиизомасляная кислота3. Оптическая изомерия – изомерия, связанная сналичием асимметрических атомов углерода.

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 1595 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2187 - | 2138 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.