Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Циркуляция векторного поля вдоль кривой




Пусть векторное поле определено в пространственной области Е. Выберем в этой области какую-нибудь кривую ℓ. Ориентируем эту кривую, указав на ней положительное направление, для чего установим на начальную точку А и конечную – В (рис. 1). Пусть – орт касательной в точке М к кривой , совпадающей по направлению с направлением кривой. Разобьем кривую любым образом на n "элементарных дуг" длиной D Sk (k=1,2, …,n) в направлении от А к В и в произвольном месте каждой элементарной дуги возьмем по точке Mk. Для k -й элементарной дуги составим произведение

(1)

 

а затем просуммируем все подобные произведения по всем k:

(2)

 

Мы пришли к интегральной сумме первого рода по кривой . Если функции P, Q, R непрерывны в области Е, а maxD Sk – наибольшая из длин D Sk, то при условии maxD Sk ® 0 сумма (2) стремится к конечному пределу, которым является криволинейный интеграл первого рода от функции по кривой :

. (3)

Вводя в рассмотрение векторный элемент линии с координатами dx, dy, dz, можем представить интеграл (3) в координатной форме:

 

. (4)

Особенно большую роль играет в теории поля криволинейный интеграл (4) в случае, когда кривая , по которой он берется, замкнута, т.е. в случае когда конец В этой кривой совпадает с ее началом А. В этом случае криволинейный интеграл (4) называется циркуляцией векторного поля по замкнутой кривой и обозначается символом :

 

. (5)





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 401 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2340 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.