Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Порождающей процедуры




Простейший пример - задание последовательности элементов множества формулой, содержащей параметр:

Задавая различные значения параметра k, мы можем вычислять элементы множества и т.д. Подобное задание

может быть явным, как в данном примере, или неявным, требующим разрешения. В частности, используются возвратные, или рекуррентные соотношения. Например, числа Фибоначчи задаются условиями:

Последняя формула позволяет последовательно вычислять значения

и т.д. Возможность выразить общий n-й член этой последовательности как явную функцию параметра п для того, чтобы можно было определить, например, значение о|00, не вычисляя всех предыдущих, будет рассмотрена в разделе "Элементы комбинаторики".

Рассмотрим другой пример задания числового множества М порождающей процедурой:

Убедимся, что множество М конечно и состоит из 6 элементов, а именно М - {5, 1/5, -4, -1/4, 4/5, 5 / 4}. В самом деле, для каждого

а, начиная со значения а - 5, есть две возможности порождения новых элементов: операциями (2) и (3). При этом могут получаться и элементы, порожденные ранее. Так, из числа 5 операцией (2) получается 1/5, операцией (3) - число (-4), а из числа 1/5 операцией (2) - снова число 5.

Рассмотрим схему порождения (рис.1), где операция (2) изображена; одинарной стрелкой, а операция (3) - двойной Схема показывает, что никаких других чисел процедуры (2) и (3) не дают.

Если же в правиле (3) заменить (1 - а) на (2 - а), то порождаемое • множество будет бесконечным: из числа 5 чередующейся t последовательностью операций (2) и (3) порождается

последовательность чисел

Упражнение. Проследите, какое число порождается конечной последовательностью операций 2, 3, 3, 2, 2, 3, 2, 3, 3, 2. Введем еще одно понятие.

Разбиение множества U - система непустых подмножеств

и\ множества U такая, что их объединение равно U (полнота разбиения), а все попарные пересечения - пусты (чистота разбиения). Сами Аа называются классами, или блоками разбиения. Система курсов

данного факультета есть разбиение множества его студентов; система групп есть другое разбиение того же множества. Другой пример: множество всех автомобилей может быть разными способами разбито на классы в зависимости от марки, объема двигателя, компании-производителя, года выпуска, стоимости и др. При анкетировании или классификации объекты распределяются по группам; не входящие в ту или иную конкретную группу могут составлять группировку "прочие" -для полноты разбиения.

Пространство элементарных событий в некотором стохастическом эксперименте представляет собой разбиение достоверного события.

Множество прямых на плоскости разбивается на бесконечную совокупность систем прямых, параллельных тому, или иному направлению Поверхность, представляющая в трехмерной системе координат график функции двух переменных, разбивается на линии уровня.

Множество квартир дома разбивается на подмножества квартир, расположенных на одном этаже; другое разбиение - на подмножества

квартир из одного подъезда.

Если А и В - два подмножества универсального множества U, то 4 подмножества

образуют разбиение множества V (см рис.2). Аналогично, для 3 множеств А, В,С разбиение универсального множества U на 8 подмножеств

Л/0—Л/7 изображено на рис 3. Сами множества А,В,С могут быть представлены как объединения:

Упражнение. Выразить множества с помощью операций

над множествами А, В, С. Указание: множество , например, можно представить двояко:

Каждый элемент входит в множество в единственном экземпляре, без повторений, в отличие, например, от выборки в математической статистике. Конечная последовательность любых объектов, среди которых могут быть и повторяющиеся, называется кортежем (или вектором). Сами объекты называются компонентами кортежа. Вектором обычно называют кортеж, состоящий из чисел. Кортеж обозначается также, как вектор: ; п называется длиной

кортежа Примером кортежа могут служить кортеж чисел, кортеж цифр в записи целого числа, кортеж букв в слове, кортеж слов во фразе.

Два кортежа считаются равными, если у них при одинаковой длине совпадают первые элементы, вторые элементы и т.д. Поэтому, например,

кортежи (7,8, А,+, 8) и (7,8,+,8, А) различны, хотя имеют одинаковый

состав.

Декартовым (прямым) произведением множеств называется

1) для двух множеств А, В. произведение Ах В - множество всех пар (а,Ь), где

2) для п множеств : произведение. множество всех векторов где

если все одинаковы и равны А, то произведение обозначается и называется n-й степенью

множества А.

Примеры. 1) Если R - множество точек числовой прямой, то множество точек п -мерного арифметического пространства; в частности,

- множество точек плоскости, - множество точек пространства трех измерений.

2) Рассматриваемый в физике пространственно-временной

континуум, представляющий собой прямое произведение , где

- трехмерное пространство, а Т - числовая ось времени.

3) Географические координаты точки земной поверхности: широта

и долгота представляют элемент прямого произведения ШхД, где

Ш = [-90.+90], Д = [-\ 80,+180].

4) Известно, что прямая в трехмерном пространстве определяется двумя точками в том смысле, что через две различные точхи проходит ровно одна прямая. Упорядоченная пара точек (M,N) есть элемент

прямого произведения , которому можно сопоставить точку 6-

мерного пространства - 6 чисел: тройку координат точки Л/ и тройку

координат точки Л'. В этом примере пара (N,M) определяет ту же

прямую, что и (A/./V), а пара совпадающих элементов (Л/,Л/) не определяет прямой.

5) Возможные исходы при бросании игральной кости составляют множество {1,2,3,4,5,6}, т.е. отрезок [1,6] натурального ряда. Если же игральную кость бросают 4 раза, то пространство элементарных событий представляет собой [1,6], т.е. множество всех четверок где

В отдельных случаях имеют содержательный смысл не все пары, тройки и т.д. Так, в примере 3 при Ш = 90' не имеет смысла значение Д (подобно тому, как в полярных координатах при р — 0 не определено значение полярного угла <р).

Если А и В - два множества, то ; равенство

достигается только если или (в частности, если А- В].

Практической иллюстрацией этого соотношения является следующий пример.

6} В определении возрастания функции действительной переменной на множестве фигурируют пары точек:

если

Поэтому для функции /, возрастающей на множестве А,, выполнено условие (*) для . Аналогично,

при возрастании той же функции на множестве условие (*) должно выполняться для . На рис.4 штриховкой показаны оба этих

множества, - для наглядности, - два непересекающихся

промежутка . В то же время, для возрастания

функции / на объединении необходимо, чтобы условие (*)

выполнялось для любой пары . Из рис.4 видно, что

это множество на координатной плоскости состоит из 4 частей: двух квадратов и двух произведений [a,b]x[c,d] и [c,f/]x[«,/>] В этих частях множества условие (*) может

выполняться не для всех пар . Поэтому из возрастания функции

f отдельно на и не следует, вообще говоря, возрастание на их объединении. Рассмотрите, например, функцию в областях

(0,я/2) и (я;2,Зя/2) -см рис.5.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 651 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.