Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Введение. Предмет дискретной математики




Дискретная математика (ДМ), или дискретный анализ - область математики, которая занимается исследованиями структур и задач на конечных множествах. Поэтому в качестве синонима иногда используется термин "конечная математика". Можно считать общепринятым деление математики на континуальную (непрерывную) и дискретную. Последняя представляет собой важное направление, имеющее характерные для него предмет исследований, методы и задачи. Специфика задач дискретной математики в первую очередь предполагает отказ от основных понятий классической математики - предела и непрерывности. Поэтому для задач ДМ обычные средства классического анализа являются вспомогательными.

ДМ - самостоятельное направление современной математики. ДМ изучает математические модели объектов, процессов, зависимостей, существующих в реальном мире, с которыми имеют дело в технике, информатике и других областях знаний.

Дискретная и непрерывная математика взаимно дополняют друг друга. Понятия и методы одной часто используются в другой. Один и тот

|же объект может рассматриваться с двух точек зрения и в зависимости от этого выбирается непрерывная или дискретная модель. Сегодня ДМ является важным звеном математического образования. Умение проводить анализ, композицию и декомпозицию информационных комплексов и информационных процессов -обязательное квалификационное требование к специалистам в области информатики.

Знание дискретной математики необходимо для создания и эксплуатации интегрированных систем обработки информации и их компонент (математического обеспечения, пакетов прикладных программ, распределенных банков данных, сетей передачи данных, систем с разделением ресурсов и распределенной обработкой информации).

В широком смысле ДМ включает в себя такие сложившиеся математические разделы, как теория множеств и отношений, математическая логика, комбинаторный анализ, а также ряд других, которые стали развиваться наиболее интенсивно в связи с внедрением вычислительной техники. В узком смысле ДМ ограничивается только этими новыми разделами, к которым относятся: теория функциональных систем, теория графов, теория автоматов, теория кодирования, теория алгоритмов и др.

Еще в доньютоновский период появились простейшие понятия комбинаторики (П.Ферма, Б.Паскаль, Франция, XVIII в.). Комбинаторика возникла как основа дискретной теории вероятностей в связи сисследованиями в области азартных игр. Л.Эйлер в середине XVIII в. закладывает основы теории графов; в середине XIX в. Дж. Буль, опираясь на некоторые идеи Г.Лейбница, придумывает свою "универсальную алгебру" в продолжение наметившегося еще в средние века стремления к формализации аристотелевой логики. Конец XIX в., характеризующийся, с одной стороны, обобщающе-синтетическим подходом к различным разделам математики, а с другой - стремлением к строгости математических обоснований, дает толчок к созданию и быстрому расцвету математической логики.

Основным поставщиком задач и идей для ДМ в XX в. становится кибернетика, а универсальным вычислительным средством - ЭВМ Задачи анализа и конструирования сложных систем послужили стимулом для разработки теории графов; задачи хранения, обработки и передачи информации привели к теории кодирования (дискретной теории информации); задачи оптимизации вызвали появление дискретного программирования (методы исследования и решения экстремальных задач на конечных множествах); исследование основных понятий вычислительной математики - вычислимости и алгоритма -стимулировало появление теории алгоритмов и теории сложности.

* * *

Напомним некоторые основные понятия базового курса [10]. Множество - это совокупность объектов, называемых





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 925 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.