Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Свойства бинарных операций




Ассоциативной бинарной операцией называется операция, если она обладает свойством . Ассоциативность

' позволяет записывать последовательность таких операций без скобок: f . Ср. в арифметике формулы. Примером

U ассоциативных операций служат объединение и пересечение множеств. '• Операция деления не ассоциативна: (24:3):4 = 2, тогда как 24:(3:4) = 24: '. 3/4 = 32. Также не ассоциативно вычитание. Проверьте это. Поэтому для I бесскобочной записи 20-5-7 принято специальное соглашение: она л означает (20-5)-7, но не 20-(5-7).

Г Коммутативной бинарной операцией называется операция,

,. обладающая свойством перестановочности:

Примеры. Сложение и умножение чисел, сложение и скалярное умножение векторов, сложение поворотов плоскости вокруг начала координат, вычисление частных производных функции нескольких переменных (напомним равенство смешанных частных производных: второго порядка . Примером некоммутативной

операции являются вычитание и деление чисел, умножение квадратных матриц.

Ассоциативными и коммутативными являются операции max(X, Y) и min(X, Y) на множестве чисел; поэтому можно употреблять записи ггах(X, Y, Z, Т), min(А, В, С).

Для описанных в п. 1.2. функциональных элементов, реализующих некоммутативные операции, необходимо правильное присоединение подсхем-аргументов к входам; различный порядок присоединения реализует разные функции. Обычно считается, что входы элемента упорядочены слева направо, и у 2-местного элемента левый вход соответствует первой переменной, правый - второй. Так, для операции вычитания оба варианта присоединения показаны на рис.7.

Дистрибутивность бинарной операции выражает распределительный закон, подобный арифметическому соотношению (а + Ь)с = ас + bc.

Дистрибутивность слева бинарной операции относительно бинарной операции - свойство, состоящее в том, что

£

Свойством дистрибутивности в арифметике обладает умножение относительно сложения, но не сложение относительно умножения.

Дистрибутивность справа бинарной операции относительно бинарной операции -свойство, состоящее в том, что

Дистрибутивность операций позволяет раскрывать скобки в формулах.

Вернемся к перечню свойств операций над множествами, приведенному в п. 1.1. Можно видеть, что свойства 1-2 выражают коммутативность, а свойства 3-4 - ассоциативность операций свойства 5-6 - взаимную дистрибутивность. Свойства 1-10 относятся только к операциям объединения и пересечения. Законы де Моргана 11, 12 связывают все три операции. Свойства 13-20 связаны с операциями над пустым множеством и универсальным множеством

U.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 715 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2737 - | 2554 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.16 с.