Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дирихле есебі үшін торлар әдісі




Бiрiншi шектiк есеп немесе Пуассон теңдеуi үшiн

 

 

(2)

 

 

Дирихле есебi: Қандай да бiр G облысының iшiнде (2) теңдеудi қанағаттандыратын, ал Г шекарасында

 

(3)

 

шартын қанағаттандыратын формуласын табу керек, мұндағы – берiлген үзiлiссiз функция.

және қадамдарын сәйкес х және у деп таңдап, тор тұрғызамыз және әрбiр iшкi түйiнiнде туындыларын (1) ақырлы айырымдар қатынасымен алмастырып (2) теңдеудi мына түрде жазамыз:

 

 

(4)

 

мұндағы

функциясының мәндерiне қатысты сызықтық алгебралық теңдеулер жүйесiн бередi.

Дербес жағдай. Егер G облысы тiк төртбұрыш және болса, онда (4) теңдеулер былайша жазылады:

 

 

Егер болғанда (2) Лаплас теңдеуі деп аталады.

және сәйкес ақырлы-айырымдық теңдеулер келесi түрде жазылады:

 

 

және теңдеулердi жазған кезде келесi түйiндер сұлбасы қолданылды:

 

 

2-сурет

Дифференциалдық теңдеудi айырымдық теңдеумен алмастыру қателiгi, яғни Лаплас теңдеуi үшiн қалдық мүше келесi теңсiздiкпен бағаланады:

 

мұндағы

 

Айырымдық әдiспен алынған жуықтаң шешiмнiң қателiгi келесi үш қателiктерден құралады:

1. Дифференциалдық теңдеудi айырымдық теңдеумен ауыстырғандағы қателiктен;

2. Шеттiк шарттарды жуықтау қателiгiнен;

3. Айырымдық теңдеулер жүйесiн жуықтап шешу нәтижесiнде пайда болатын қателiктерден.

 

МЫСАЛ

Қабырғасы 1-ге тең, оқшауланған жазық шаршы пластинкадағы жылудың станционар үлестірімі туралы есепті пластинканың шекарасында температура тұрақты болған жағдайда қарастырайық.

3-сурет

 

Температураның үлестірімін беретін (, ) функциясы Лаплас теңдеуінің шешімі болатыны белгілі:

 

Берілген есеп үшін шекаралық шарттар 3-суретте көрсетілген.

Шешуі:

қадаммен тор құрамыз, тоғыз ішкі тораптар аламыз. Осы тораптарда ақырлы-айырымдық теңдеулер құрамыз.

Шекаралық шарттардың симметриялылығын

 

11= 31, 12= 32, 13= 33 (1)

 

Бұл функциясының ішкі тораптардағы белгісіз мәндерінің санын тоғыздан алтыға дейін азайтады.

Осылайша (3,1), (3,2), (3,3) тораптарда ақырлы-айырымдық теңдеулерді жазудың қажеті жоқ. Қалған ішкі (1,1), (2,1), (1,2), (2,2), (1,3), (2,3) тораптарда сәйкес алты теңдеуді аламыз:

 

 

Бұл теңдеулер құрамына тағы функцияның шекаралық нүктедегі 12 мәні кіреді. Ол мәндерді біз шекаралық шарттардан аламыз:

 

(3)

 

Қалған тораптарға шекаралық шарттар қолданылмайды.

(2), (3) шарттарды ескере отырып, нақты түрде келесі жүйені аламыз:

 

 

Бұл жүйені Гаусс әдісімен шешіп, алатынымыз:

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 1563 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2294 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.