Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Напряжение в точке сечения бруса




             

                                                   Рис. 7.4

Рассмотрим правую отсеченную часть бруса, представленного на рис.7.3. Выберем произвольную точку сечения с положительными координатами и наметим вокруг этой точки элементарную площадку  (рис.7.4). На эту площадку будет действовать некоторая элементарная внутренняя сила . Напомним, что внутренние силы, которые возникают в произвольном сечении бруса, распределены по всей площади этого сечения. Составляющие внутренних сил, которые являются сосредоточенными силами и моментами, нужно рассматривать как статический эквивалент распределенных нагрузок.

Интенсивность распределенных внутренних сил в произвольной точке сечения называется напряжением. Напряжение в точке может быть средним и полным.

Среднее напряжение pср равняется отношению элементарной величины внутренней силы , которая действует на элементарную часть   площади сечения, к величине этой части площади (рис.7.4), то есть:

                                                                                                              (7.2) 

Полное напряжение p  в точке сечения равняется пределу среднего напряжения, когда величина элементарной площади    стремится к нулю, т.е.:

                                                                                                                       (7.3)

 

                                              

                                                   Рис. 7.5

 

Напряжение является векторной величиной и в общем случае не является перпендикулярным к плоскости сечения и не расположено в этой плоскости. Оно действует под некоторым углом относительно плоскости сечения, или относительно нормали к этой плоскости (рис.7.5). При этом линии действия среднего и полного напряжений в общем случае не совпадают.

Разложим полное напряжение p на две составляющие – нормальную и касательную. Нормальная составляющая полного напряжения действует в направлении нормали к плоскости сечения и называется нормальным напряжением σ в точке сечения. Касательная составляющая действует в плоскости сечения и называется касательным напряжением . Поскольку эти напряжения взаимно перпендикулярны, то их равнодействующая p будет определяться по известной формуле:

 

                                                                                                       (7.4)

 

 В общем случае касательное напряжение  не является параллельным главным осям y   и z поперечного сечения, поэтому оно может быть разложено на две составляющие параллельные этим осям, т. е. составляющие   и , при этом:

 

                                                                                                        (7.5)

Нормальные и касательные напряжения в сопротивлении материалов играют очень важную роль, потому что от них зависит прочность элементов машин и инженерных сооружений. Эти напряжения связаны с внутренними усилиями и определяются в зависимости от вида деформации бруса. В следующих главах будут выведены основные формулы для определения нормальных и касательных напряжений.

 





Поделиться с друзьями:


Дата добавления: 2018-11-12; Мы поможем в написании ваших работ!; просмотров: 307 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2438 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.