Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Характеристики распыливания жидкости




Струя жидкости, истекающая в газовую среду, неустойчива и по мере удаления от сопла (насадка) дробится на капли. В ряде случаев требуется дополнительное воздействие для увеличения стенки распыливания. Высокая степень распыливания, например, требуется при подаче топлива в ДВС, ТРД, РД, в топки нагревательных печей и парогенераторов.

Причинами распыливания являются:

неустойчивость жидкого цилиндра;

влияние внешней среды;

вихревые движения в потоке перед насадкой;

механическое внешнее влияние на струю.

Для распыливания жидкостей применяют устройства, называемые форсунками.

Основные типы форсунок: струйные, центробежные, пневматические, ультразвуковые. механические.

Примерный расчёт центробежной форсунки.

Живое сечение потока жидкости в сопле равно

При осевой составляющей скорости массовый расход через форсунку равен

или

Коэффициент живого сечения равен

Из параметров форсунки и струи можно составить критерий, который называют геометрическим фактором форсунки.

где - число тангенциальных отверстий.

С учётом гидравлических потерь геометрический фактор принимает значение

Коэффициент находят из зависимости

где

С учётом указанного выше остальные параметры определяют с помощью следующих зависимостей:

Эффект эжекции

Эффект эжекции заключается в том, что поток с более высоким давлением, движущийся с большой скоростью, увлекает за собой среду низкого давления. Увлеченный поток называется эжектируемым. В процессе смешения двух сред происходит выравнивание скоростей, сопровождающееся, как правило, повышением давления.

Основная особенность физического процесса заключается в том, что смешение потоков происходит при больших скоростях эжектирующего (активного) потока.

Так как коаксиальные струи распространяются не в атмосфере с постоянным давлением, а ограничены стенками канала или камерами смешения, среднее осевое количество движения, осредненное по массовому расходу, не сохраняется постоянным, и статическое давление может изменяться вдоль оси х. Пока скорость эжектирующего потока больше скорости эжектируемого потока в камере смешения постоянного радиуса, будет иметь место увеличение давления в направлении х, где ядра поглощаются благодаря быстрому смешению сдвиговых слоев (ядро - та часть прямого потока, которая входит в канал).

Процесс смешения потоков в камере эжектора схематически иллюстрирована на рис. 1.

Рис.1. Смешение потоков в камере эжектора

 

В сечении 0 - 0, совпадающем с началом камеры смешения, средние скорости рабочего (эжектирующего) потока VE и всасываемого (эжектируемого) потока VEJ являются исходными. За этим сечением расположен начальный участок смешения потоков, где по центру сохраняется ядро скорости рабочего потока, не охваченное процессом смешения. В пределах ядра скорости потока постоянны и равны средней скорости истечения из сопла VE.

Аналогичное ядро постоянных скоростей можно наблюдать в пределах кольцевой области, охватываемой всасываемым потоком. Между этими областями постоянных скоростей расположена зона турбулентного обмена, где скорости потоков постоянно меняются от VE в ядре рабочего потока до VEJ в зоне всасываемого потока. Начальный участок заканчивается в створе, где выклинивается ядро рабочего потока.

Когда точки выклинивания ядра скорости рабочего потока и ядра скорости всасываемого потока не совпадают, между начальным и основным участком появляется переходный участок, в пределах которого имеется только одна из зон постоянных скоростей.

Смешение потоков в камере эжектора сопровождается изменениями осредненного давления вдоль проточной части. По мере выравнивания профиля поперечного распределения скоростей потоков и уменьшения от сечения к сечению средней скорости суммарного потока происходит повышение давления.

Повышение давления в зоне смешения канала постоянного радиуса без учета поверхностного трения о стенку может быть определено по формуле

,

где р0 - давление в сечении 0-0; р1 - давление в сечении 1-1 (рис. 1); r - плотность вещества; VE - скорость рабочего потока; VA - скорость всасываемого потока; АE - отношение площадей сопла и камеры (относительное расширение).

Эффект проявляется, например, в цилиндрической трубе при наличии не менее двух струйных течений с различными скоростями.

Вещественный поток принимает форму канала или камеры, в которой происходит смешение потоков.

Простейшая эжекционная система входит в комплектацию бытовых пульвелизаторов, пылесосов. Для технической реализации эффекта эжекции достаточно направить поток воздуха от домашнего пылесоса в приемный патрубок системы, изображенной на рис. 2.

 

Рис. 2. Техническая реализация эффекта эжекции

1 - трубка с потоком эжектирующего воздуха; 2 - патрубок подвода эжектируемой жидкости; 3 - резервуар с эжектируемой жидкостью; 4 - поток воздуха; 5 - конус распыления эжектируемой жидкости.

 

Бернуллиевское разрежение в потоке воздуха вытягивает жидкость (водный окрашенный раствор) из резервуара, и поток воздуха распыляет ее путем отрыва капель с торца патрубка подвода. Перепад высоты между уровнем жидкости в резервуаре и точкой распыления (торцом патрубка) составляет 10 - 15 см. Внутренний диаметр трубки с газовым потоком - 30 - 40мм, патрубка подвода - 2 - 3мм.

Повышение давления эжектируемого потока без непосредственной механической энергии применяется в струйных аппаратах, которые используются в различных отраслях техники: на электростанциях - в устройствах топливосжигания (газовые инжекционные горелки); в системе питания паровых котлов (противокавитационные водоструйные насосы); для повышения давления из отборов турбин (пароструйные компрессоры); для отсоса воздуха из конденсатора (пароструйные и водоструйные эжекторы); в системах воздушного охлаждения генераторов; в теплофикационных установках; в качестве смесителей на отопительных водах; в промышленной теплотехнике - в системах топливоподачи, горения и воздухоснабжения печей, стендовых установках для испытания двигателей; в вентиляционных установках - для создания непрерывного потока воздуха через каналы и помещения; в водопроводных установках - для подъема воды из глубоких скважин; для транспортирования твердых сыпучих материалов и жидкостей.

 

 





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 438 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2232 - | 2154 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.