Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вода для инъекционных препаратов




По ГФ «Вода для инъекций» должна удовлетворять всем требованиям, предъявляемым к воде дистиллированной и быть апирогенной. Пирогенные вещества представляют собой липополисахаридные или липо-полисахаридно-протеиновые комплексы наружных мембран микроорганизмов и могут иметь разные размеры и форму: агрегаты с кальцием или магнием в виде пузырьков диаметром около 0,1 мкм; мицеллы, не проходящие через фильтр, комплексы малых размеров (молекулярные массы соответственно 1000000 и 2000000). Фосфолипидная часть сообщает комплексам отрицательный заряд, поэтому они адсорбируются на положительно заряженных поверхностях фильтрующих перегородок. Введение их в организм в дозе 1 мкг вызывает лихорадку через 30-60 мин, что объясняется стимулированием лейкоцитов к выделению эндогенных пирогенов и повышением синтеза простагландинов. Липополисахариды термостойки и разрушаются только при температуре 250-300°С в течение 1-2 ч.

Получение воды для инъекционных препаратов. Вода для инъекционных растворов получается методом перегонки питьевой или обессоленной воды в специальных аквадистилляторах. Фармакопея США XX разрешает, кроме этого, использовать обратный осмос. Основными узлами аквадистилляторов являются испаритель, конденсатор и сборник. Пирогенные свойства дистиллят приобретает в результате переброса капельной фазы, содержащей пирогенные вещества из испарителя в конденсатор и сборник. При кипении воды в испарителе происходит пузырьковое и поверхностное парообразование. В первом случае в пристенном слое зоны нагревания испарителя при кипении образуются пузырьки пара, которые вырываясь из жидкости, увлекают ее за собой в виде тончайшей пленки и превращаются в мельчайшие капельки. Поверхностное парообразование не дает выброса капель. Поэтому конструктивным решением вопроса повышения качества дистиллята является применение пленочных испарителей. В установках, где это возможно, следует уменьшать толщину кипящего слоя. Целесообразно регулировать обогрев, обеспечить равномерное кипение и оптимальную скорость парообразования. Неравномерный и интенсивный нагрев ведет к бурному кипению и перебросу капельной фазы. Удаление из воды солей, ПАВ и других соединений также уменьшает пенообразование и, следовательно, выделение капель воды в паровую фазу. Кроме того, снижается образование накипи и увеличивается срок службы дистиллятора. Очистка воды способствует удалению многих микроорганизмов и пирогенных веществ.

Подготовка воды включает осаждение кальция и магния гидрокарбонатов с помощью кальция гидро-ксида и осаждение кальция и магния сульфатов и хлоридов - натрия карбонатом. Для коагуляции коллоидных примесей используют алюминия сульфат или квасцы алюмокалиевые. Эти соединения связывают и аммиак. Многие органические вещества и микроорганизмы разрушаются обработкой калия перманга-натом в концентрации 25 мг на I л воды (см. том 1). Наиболее полное удаление примесей в воде достигается с помощью ионного обмена катионитами КУ-1, КУ-2, КУ-23 и анионитами ЭДЭ-ЮП, АВ-171.

В аквадистилляторах предусматривается удаление капельной фазы разными способами. Так, например, в верхней части испарителя и в месте его соединения с паропроводом укрепляются отбойники (брызгоулав-ливатели), которые меняют направление движения капель и они, ударяясь о влажную поверхность отбойников, стекают вниз. На пути от испарителя в конденсатор многократно меняется направление, скорость движения и давление пара в результате его перехода из цилиндрической части малого диаметра в емкость большого диаметра. Капли воды теряют скорость и при этом выводятся из парового потока. Большое внимание уделяется созданию достаточной высоты парового пространства, чтобы основная масса капель, не преодолев большого расстояния, укрупнялась и оседала в Испарителе. Эффективно отделение капельной фазы в центробежном поле в дистилляторах «Финн-аква». С этой целью с помощью специальных направляющих создается спиралеобразное вращательное движение потока пара с большой скоростью. Возникающая центробежная сила прижимает капли к влажным стенкам аппарата и они стекают в нижнюю часть испарителя. В термокомпрессионных установках испарение производится внутри тонких обогреваемых трубок. Капли, продвигаясь вверх, соприкасаются с нагретой стенкой трубок и испаряются. В дистилляторах «Вапоникс» США эффективно сочетается несколько способов: резкое изменение скорости потока пара, его фильтрование через специальный фильтр с диаметром отверстий 40 мкм и отделение капель в центробежном поле. В трехступенчатом горизонтальном дистилляторе Мариупольского завода технологического оборудования сочетается большая высота парового пространства и прохождение пара через слой проточной воды апирогенной в барботажной ситчатой тарелке.

Рис. 13.11. Принцип работы трехступенчатого горизонтального аквадистиллятора.

Объяснение в тексте.

 

Традиционные конструкции конденсаторов-холодильников имеют существенные недостатки, так как в них происходит смешивание и растворение газов и летучих компонентов, выделяющихся из воды при перегонке, и в зоне охлаждения конденсата возможно размножение микроорганизмов. Для устранения этих недостатков в конденсаторах новой конструкции пар подается не сверху, а снизу, при этом он конденсируется в нижней части, а газы и другие примеси поднимаются в верхнюю часть и удаляются. В этих конденсаторах дистиллят охлаждается до температуры 80-95°С, что предотвращает рост микроорганизмов.

Наиболее часто в промышленном производстве применяют аквадистилляторы - многоступенчатые; они имеют три и более корпусов, расположенных вертикально или горизонтально (рис. 13.11). Каждый корпус (1) представляет собой испаритель с трубчатым паровым нагревателем (5). Технический греющий пар подается в его верхнюю часть, а отработанный выводится в нижней части в парозапорное устройство линии конденсата технического пара. Внутрь испарителя заливается нагретая в конденсаторе-холодильнике (2) вода деминерализованная до постоянного уровня и нагревается до кипения. Вторичный пар в верхней части каждого корпуса проходит через ситчатую тарелку с постоянным слоем проточной воды апирогенной (4). Барботаж способствует эффективному задерживанию капель из пара. Очищенный пар поступает в нагреватель второго корпуса и нагревает воду, находящуюся в нем, до кипения. Вторичный пар второго корпуса барботирует через слой воды апирогенной в ситчатой тарелке и поступает в нагреватель третьего. Очищенный вторичный пар третьего корпуса поступает в конденсатор-холодильник (2), являющийся общим для всех корпусов. Вторичный пар первого и второго корпусов из соответствующих нагревателей, проходя подпорные шайбы, подается вместе с образовавшимся дистиллятом в конденсатор-холодильник. Дистиллят собирается в сборнике с воздушным фильтром. Восполнение воды в испарителях всех корпусов происходит нагретой водой из конденсатора-холодильника. Для последовательного нагревания воды до кипения в нагревателях корпусов автоматически с помощью подпорных шайб поддерживается соответствующее давление и температура пара. В испарителях первого корпуса - 120-140°С, второго - 110-120°С и третьего- 103-ПО°С. Качество дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено эффективное удаление капельной фазы из пара.

Рис. 13.12. Принцип работы термокомпрессионного а кв а дистиллятора.

Объяснение в тексте.

 

Термокомпрессионный аквадистиллятор отличается тем, что питание аппарата осуществляется водой деминерализованной (рис. 13.12), которая подается в регулятор давления (4) и через регулятор уровня поступает в нижнюю часть конденеаторз-холодильника (1), заполняет его межтрубное пространство, направляется в камеру предварительного нагрева (5), а из нее - в трубки испарителя (6). Здесь предварительно нагретая вода доводится до кипения и образующийся пар откачивается из парового пространства (2) компрессором (3). В камере испарения создается небольшое разрежение 0,88 атм и закипание воды в трубках - при температуре 96°С. Вторичный пар в компрессоре сжимается, его температура повышается до 103-120°С. Как греющий, он проходит в межтрубное пространство испарителя и нагревает воду в трубках до кипения. В межтрубном пространстве образуется конденсат, который направляется в верхнюю часть конденсатора-холодильника, охлаждается и собирается в сборнике дистиллята. Качество воды апирогенной, получаемой в этом аппарате, высокое, так как капельная фаза испаряется на стенках трубок. Нагревание и кипение в трубках испарителя происходит в тонком слое, равномерно и без перебросов. Задерживанию капель из пара способствует также высота парового пространства. Недостатками являются сложность устройства и эксплуатации.

Аквадистиллятор «Финн-аква» (Финляндия) - трехкорпусной (рис. 13.13). Исходная вода деминерализованная подается через регулятор давления (1) в конденсатор-холодильник (2), проходит теплообменники камер предварительного нагрева (3) - III, II и I корпусов, нагревается и поступает в зону испарения (5), в которой размещены системы трубок, обогреваемых изнутри греющим паром. Нагретая вода с помощью распределительного устройства направляется на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним вниз и нагревается до кипения.

Поверхность кипящих пленок воды очень большая, поэтому в испарителе создается интенсивный поток пара, специальными направляющими ему задается спиралеобразное вращательное движение снизу вверх с большой скоростью - 20-60 м/с. Центробежная сила, возникающая при этом, прижимает капли к стенкам и они стекают в нижнюю часть корпуса. Очищенный вторичный пар направляется в камеру предварительного нагрева и трубки нагревателя II корпуса. I корпус обогревается техническим паром, который поступает в камеру предварительного нагрева, затем в трубки испарителя и выводится через парозапорное устройство в линию технического конденсата (4). Избыток питающей воды через трубу (6) из нижней части I и II корпусов подается в испарители, где вода также в виде пленки стекает по наружной поверхности (обогреваемых внутри трубок) по трубе (7) в конденсатор-холодильник в качестве целевого дистиллята. В III корпус питающая вода поступает из нижней части корпуса II. Конденсат внутри трубок III корпуса также передается по трубе (7) в конденсатор-холодильник. Обогрев зоны предварительного нагрева и трубчатых испарителей II и III корпусов осуществляется соответственно вторичным паром I и II корпусов. Вторичный очищенный пар из III корпуса по трубе (8) поступает непосредственно в холодильник и конденсируется. Объединенный конденсат из холодильника проходит специальный теплообменник (9), где поддерживается температура от 80 до 95°С. На выходе из него в дистилляте постоянно замеряется удельная электропроводность и, если вода оказывается недостаточного качества по этому показателю, она тотчас отбрасывается в канализационный слив. Основной поток получаемой воды апирогенной поступает в специальную систему сбора и хранения.

Хранение воды для инъекционных растворов. Наиболее предпочтительным является использование свежеприготовленной воды. При хранении вода поглощает из воздуха углерода диоксид и кислород, может взаимодействовать с материалом емкости, вызывая переход ионов тяжелых металлов и является средой для размножения микроорганизмов.

Рис. 13.13. Принцип работы аквадистиллятора «Финн-аква».

Объяснение в тексте.

Надежное хранение гарантируется в специальных системах из инертного материала, где вода находится при высокой температуре и постоянном движении. Система состоит из двух емкостей с паровой рубашкой и стерилизующим воздушным фильтром и насоса, который перекачивает воду из одной емкости в другую с постоянной скоростью 1-3 м/с. Температура циркулирующей воды поддерживается теплообменниками в пределах 80-95°С. Соединяющие трубы должны иметь наклон 2-3°, чтобы при промывании системы можно было полностью слить воду. Резервуары, трубопроводы и арматуру изготавливают из стойких к химическим воздействиям материалов специальных марок нержавеющей стали, титана или стекла. Максимальный срок хранения воды для инъекций - 24 ч (в асептических условиях).

Оценка качества. Основным показателем качества является апирогенность. По фармакопейной методике она определяется на трех кроликах введением 0,9% изотонического раствора натрия хлорида, приготовленного на испытуемой воде, в ушную вену 10 мл на 1 кг массы. Три раза с интервалом в 1 ч у каждого кролика замеряют температуру. Вода считается апирогенной, если ни у одного из трех кроликов в каждом из трех измерений температура не повышалась более чем на 0,6й по сравнению с исходной, а в сумме не превышала 1,4°. Относительная чувствительность обнаружения пирогенных веществ составляет 1 - 10 нг/мл.

Недостатки методики: зависимость результатов от индивидуальной чувствительности животного; большее восприятие пирогенной реакции человеком по сравнению с кроликом; высокие затраты на содержание и уход за животными.

Фармакопея США XX (1980 г.) включила наряду с испытанием на кроликах определение пирогенных веществ с помощью реакции гелирования лизата амебоцитов (РГЛА) крови (гемолимфы) подковообразных крабов Limulus polyphemus. В настоящее время установлены такие же свойства лизата амебоцитов краба Tachypleus tridentatis, мечехвостов и омаров. Для проведения реакции получают препарат лизата амебоцитов краба. Их отделяют от плазмы гемолимфы центрифугированием, промывают 3% стерильным апирогенным раствором натрия хлорида и разбавляют водой апирогенной в соотношении 2:1, вызывая лизис. Лизат центрифугируют и получают препарат для анализа, имеющий все компоненты энзимной системы, которая обеспечивает переход свертывающего белка (коагулогена) в гель (коагулин) под действием пирогена. Он стабилен в течение 9 мес при температуре 4°С. Анализ на пирогенность проводят в пробирке, помещая в нее 0,1 мл препарата лизата амебоцитов и 0,1 мл пробы исследуемой воды и инкубируют при температуре 36-38°С в течение 1 ч. Значение рН должно быть 6,0-8,0. Наличие геля проверяется поворотом пробирки на 180° относительно вертикальной рсит что не должно разрушать его. Обычное время РГЛА 10-15 мин, при пороговой концентрации эндотоксина - 20-25 мин, чувствительность- до 0,05 нг/мл. По стандартным препаратам липополисахаридов проверяют чувствительность лизата и наличие в исследуемом образце ингибиторов РГЛА.

Для непрерывной оценки качества получаемой воды используется измерение удельной электропроводности. Метод недостаточно объективен, так как результат зависит от степени ионизации молекул воды и примесей. Обязательно проверяют значение рН (5,0-6,8), наличие восстанавливающих веществ угольного ангидрида, нитритов, нитратов, хлоридов, сульфатов, кальция и тяжелых металлов. Аммиака допускается не более 0,00002%, сухого остатка - не более 0,001%.





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 1278 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2453 - | 2319 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.