Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задания для самостоятельного решения. 1.1. Определите характеристики (центр, полуоси, фокусы, эксцентриситет, уравнения директрис и асимптот) гиперболы




 

I уровень

1.1. Определите характеристики (центр, полуоси, фокусы, эксцентриситет, уравнения директрис и асимптот) гиперболы . Сделайте чертеж.

1.2. Составьте уравнение гиперболы, вершины которой находятся в точках A 1(5, 0) и A 2(5, 0), а расстояние между фокусами равно 14.

1.3. Составьте уравнение гиперболы, проходящей через точку М (2, 1) и имеющей асимптоты

1.4. Определите параметры гиперболы и сделайте чертеж.

 

II уровень

2.1. Определите параметры (полуоси, координаты фокусов, эксцентриситет, уравнения директрис и асимптот) гиперболы

2.2 Составьте уравнение равносторонней гиперболы, зная ее фокус F (0, 1) и асимптоту x + y = 0.

2.3. Докажите, что уравнение определяет гиперболу, определите ее параметры и форму:

1) 16 x 2 – 9 y 2 – 64 x – 54 y – 161 = 0;

2) 9 x 2 – 16 y 2 + 90 x + 32 y – 367 = 0;

3) 16 x 2 – 9 y 2 – 64 x – 18 y + 199 = 0.

2.4. Убедившись, что точка A (–5; 9/4) лежит на гиперболе найдите фокальные радиусы этой точки и ее расстояние до директрис.

 

III уровень

3.1. Гипербола касается прямых 5 x – 6 y – 16 = 0, 13 x – 10 y – – 48 = 0. Запишите уравнение гиперболы при условии, что ее оси совпадают с осями координат.

3.2. Составьте уравнения касательных к гиперболе

1) проходящих через точку A (4, 1), B (5, 2) и C (5, 6);

2) параллельных прямой 10 x – 3 y + 9 = 0;

3) перпендикулярных прямой 10 x – 3 y + 9 = 0.

 

 

Парабола

 

Параболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры параболы:

Точка F (p /2, 0) называется фокусом параболы, величина pпараметром, точка О (0, 0) – вершиной. При этом прямая OF, относительно которой парабола симметрична, задает ось этой кривой.

 
 

 


Рис. 24

 

Величина где M (x, y) – произвольная точка параболы, называется фокальным радиусом, прямая D: x = – p /2 – директрисой (она не пересекает внутреннюю область параболы). Величина называется эксцентриситетом параболы.

Основное характеристическое свойство параболы: все точки параболы равноудалены от директрисы и фокуса (рис. 24).

Существуют иные формы канонического уравнения параболы, которые определяют другие направления ее ветвей в системе координат (рис. 25).:

 
 

 

 


Рис. 25

 

Для параметрического задания параболы в качестве параметра t может быть взята величина ординаты точки параболы:

где t – произвольное действительное число.

Пример 1. Определить параметры и форму параболы по ее каноническому уравнению:

1) 2)

Решение. 1. Уравнение y 2 = –8 x определяет параболу с вершиной в точке О (0; 0), симметричную относительно оси Оx. Ее ветви направлены влево. Сравнивая данное уравнение с уравнением y 2= –2 px, находим: 2 p = 8, p = 4, p /2 = 2. Следовательно, фокус находится в точке F (–2; 0), уравнение директрисы D: x = 2 (рис. 26).

 
 

 


Рис. 26

 

2. Уравнение x 2 = –4 y задает параболу с вершиной в точке O (0; 0), симметричную относительно оси Oy. Ее ветви направлены вниз. Сравнивая данное уравнение с уравнением x 2 = –2 py, находим: 2 p = 4, p = 2, p /2 = 1. Следовательно, фокус находится в точке F (0; –1), уравнение директрисы D: y = 1 (рис. 27).

 


Рис. 27

 

Пример 2. Определить параметры и вид кривой x 2 + 8 x – 16 y – 32 = 0. Сделать чертеж.

Решение. Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

x 2 + 8 x – 16 y – 32 =0;

(x + 4)2 – 16 – 16 y – 32 =0;

(x + 4)2 – 16 y – 48 =0;

(x + 4)2 – 16(y + 3).

В результате получим

(x + 4)2 = 16(y + 3).

Это каноническое уравнение параболы с вершиной в точке (–4; –3), параметром p = 8, ветвями, направленными вверх (), осью x = –4. Фокус находится в точке F (–4; –3 + p /2), т. е. F (–4; 1) Директриса D задается уравнением y = –3 – p /2 или y = –7 (рис. 28).

 
 

 


Рис. 28

 

Пример 3. Написать уравнение кривой, все точки которой равноудалены от прямой y = 3 и точки F (0; 3).

Решение. Точка F (0; 3) лежит на оси Oy и находится с прямой y = –3 по разные стороны от начала координат, причем на одинаковом расстоянии (d = 3). Это позволяет заключить, что искомой кривой является парабола x 2 = 2 py с параметром p = 2 · 3 = 6, т. е. x 2 = 12 y (рис. 29).

 
 

 


Рис. 29

 

Пример 4. Составить уравнение параболы с вершиной в точке V (3; –2) и фокусом в точке F (1; –2).

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси Ox (одинаковые ординаты), ветви параболы направлены влево (абсцисса фокуса меньше абсциссы вершины), расстояние от фокуса до вершины равно p /2 = 3 – 1 = 2, p = 4. Значит, искомое уравнение

(y + 2)2 = –2 · 4(x – 3) или (y + 2)2 = = –8(x – 3).

 

 





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 652 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.