Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


При расчете его по прочности




а ¾ продольная сила N приложена между равнодействующими усилий

в арматуре S и S¢; б ¾ то же, за пределами расстояния между равнодействующими усилий в арматуре S и

Если полученное из расчета по формуле (160) значение х > xRh 0, в условие (159) подставляется х = xRh 0, где xR определяется по табл. 18 и 19.

Если х < 0, прочность сечения проверяется из условия (157).

При симметричном армировании прочность независимо от значения е¢ проверяется из условия (157).

Примечание. Если при e ¢ > h 0 a ¢ высота сжатой зоны, определенная без учета сжатой арматуры , меньше 2 а ¢, расчетную несущую способность можно несколько увеличить, произведя расчет по формулам (159) и (160) без учета сжатой арматуры.

3.79. Требуемое количество продольной арматуры определяется следующим образом:

а) при e ¢ £ h 0a ¢ определяется площадь сечения арматуры S и соответственно по формулам:

(161)

(162)

б) при e ¢ > h 0a ¢ определяется площадь сечения растянутой арматуры As по формуле

(163)

где x принимается по табл. 20 в зависимости от значения

(164)

При этом должно удовлетворяться условие am £ aR (см. табл. 18 и 19). В противном случае следует увеличить сечение сжатой арматуры , повысить класс бетона или увеличить размеры сечения.

Если am < 0, площадь сечения растянутой арматуры As определяется по формуле (161).

Площадь симметричной арматуры независимо от значения е ¢ подбирается по формуле (161).

Примечание. При е ¢ > h 0a ¢ необходимое количество арматуры, определенное по формуле (161), можно несколько снизить, если значение x, определенное по табл. 20 без учета сжатой арматуры, т. е. по значению окажется меньше 2 а ¢/ h 0. В этом случае площадь сечения растянутой арматуры As определяется по формуле

(165)

где z определяется по табл. 20 в зависимости от значения

ОБЩИЙ СЛУЧАЙ РАСЧЕТА НОРМАЛЬНЫХ СЕЧЕНИЙ

ВНЕЦЕНТРЕННО РАСТЯНУТОГО ЭЛЕМЕНТА

(ПРИ ЛЮБЫХ СЕЧЕНИЯХ, ВНЕШНИХ УСИЛИЯХ

И ЛЮБОМ АРМИРОВАНИИ)

3.80. Расчет сечений внецентренно растянутого элемента в общем случае (см. черт. 45) должен производиться из условия

(166)

где ¾ расстояние от продольной силы N до оси, параллельной прямой, ограничивающей сжатую зону, и проходящей через точку сжатой зоны, наиболее удаленную от указанной прямой;

Sb ¾ статический момент площади сжатой зоны бетона относительно указанной оси;

Ssi ¾ статический момент площади сечения i -го стержня продольной арматуры относительно указанной оси;

ssi ¾ напряжение в i -м стержне продольной арматуры.

Высота сжатой зоны х и напряжения ssi определяются из совместного решения уравнений (154) и (155) с заменой перед N знака „минус” знаком „плюс”.

При косом внецентренном растяжении для определения положения границы сжатой зоны кроме использования формул (154) и (155) требуется соблюдение дополнительного условия, чтобы точки приложения внешней продольной силы, равнодействующей сжимающих усилий в бетоне и арматуре и равнодействующей усилий в растянутой арматуре лежали на одной прямой (см. черт. 45).

РАСЧЕТ СЕЧЕНИЙ,

НАКЛОННЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

3.81. Расчет наклонных сечений внецентренно растянутых элементов на действие поперечной силы производится как для изгибаемых элементов согласно пп. 3.28¾3.41. При этом значение Mb в п. 3.31 определяется по формуле

(167)

где но не более 0,8;

значение Qb,min принимается равным jb 3 (1 + jf – jn) Rbtbh 0. Кроме того, во всех формулах пп. 3.29, 3.40 и 3.41 коэффициент jb 4 заменяется на jb 4 (1 – jn).

Расчет наклонных сечений внецентренно растянутых элементов на действие изгибающего момента производится как для изгибаемых элементов согласно пп. 3.42¾3.45. При этом высота сжатой зоны в наклонном сечении определяется с учетом растягивающей силы N по формуле (160) или согласно п. 3.80.

В случае выполнения условия e ¢ < h 0a ¢ расчетный момент в наклонном сечении допускается определять как момент всех внешних сил, расположенных по одну сторону от рассматриваемого наклонного сечения, относительно оси, проходлящей через центр тяжести арматуры .

ПРИМЕРЫ РАСЧЕТА

Пример 42. Дано: растянутая ветвь двухветвевой колонны с поперечным сечением размерами b = 500 мм, h = 200 мм; а = а¢ = 40 мм; продольная арматура класса A-III (Rs = Rsc = 365 МПа); площадь ее сечения As = A¢s = 982 мм2 (2 Æ 25); бетон тяжелый класса В25 (Rb = 16 МПа при gb 2 = 1,1); продольная сила N = 44 кН; максимальный изгибающий момент М = 43 кН · м.

Требуется проверить прочность нормального сечения.

Расчет. h 0 = 200 – 40 = 160 мм;

мм;

мм;

мм.

Поскольку арматура симметричная, прочность проверим из условия (157):

т. е. условие (157) не удовлетворяется. Так как е ¢ = 1037 мм > h 0a ¢ = 120 мм, а высота сжатой зоны х, определенная по формуле (160) без учета сжатой арматуры:

согласно примечанию к п. 3.78 проверим прочность из условия (159), принимая х = 40 мм и A ¢ s = 0:

т. е. прочность нормального сечения обеспечена.

Пример 43. Дано: прямоугольное сечение размерами b = 1000 мм, h = 200 мм; а = а ¢ = 35 мм; бетон тяжелый класса В15 (Rb = 7,7 МПа при gb 2 = 0,9); продольная арматура класса A-III (Rs = Rsc = 365 МПа); площадь сечения арматуры S¢ A ¢ s = 1005 мм2; растягивающая сила N = 160 кН; изгибающий момент М = 116 кН·м.

Требуется определить площадь сечения арматуры S.

Расчет. h 0 = 200 – 35 = 165 мм;

мм;

мм;

мм.

Так как е ¢ = 790 мм h 0а ¢ = 165 – 35 = 130 мм, определим необходимую площадь сечения растянутой арматуры согласно п. 3.79б.

Вычислим значение

Так как 0 < am < aR = 0,44 (см. табл. 18), значение As определим по формуле (163). Для этого по табл. 20 при am = 0б276 находим x = 0,33.

Принимаем As = 3079 мм2 (5 Æ 28).

Пример 44. Дано: прямоугольное сечение размерами b = 1000 мм, h = 200 мм; а = а¢ = 40 мм; бетон тяжелый класса В15 (Rb = 7,7 МПа при gb 2 = 0,9); продольная арматура класса A-III (Rs = Rsc = 365 МПа); растягивающая сила N = 532 кН; изгибающий момент М = 74 кН·м.

Требуется определить площадь сечения симметричной продольной арматуры.

Расчет. h 0 = h – a = 200 – 40 = 160 мм;

мм;

 

мм;

 

мм.

Поскольку арматура симметричная, площадь сечения арматуры определим по формуле (161):

мм2.

Так как е ¢ = 199 мм > h 0а ¢ = 120 мм, согласно примечанию к п. 3.79 значение As можно снизить.

Определим значение x без учета сжатой арматуры. Для этого вычислим значение am:

Из табл. 20 при am = 0,213 находим x = 0,24 и z = 0,88. Так как определим значение As по формуле (165):

мм2.

Принимаем As = A ¢ s = 2281 мм2 (6 Æ 22).

Пример 45. Дано: растянутая ветвь двухветвевой колонны с сечением размерами b = 500 мм, h = 200 мм; а = а¢ = 40 мм; бетон тяжелый класса В25 (Rbt = 1,15 МПа при gb 2 = 1,1); хомуты, расположенные по граням ветви, из арматуры класса A-III (Rsw = 285 МПа); продольная растягивающая сила N = 44 кН; поперечная сила Q = 143 кН; расстояние между перемычками двухветвевой колонны l = 600 мм.

Требуется определить диаметр и шаг хомутов.

Расчет. h 0 = hа = 200 – 40 = 160 мм. Расчет производим согласно п. 3.33а с учетом рекомендаций п. 3.81.

Значение Mb определим по формуле (167), приняв jb 2 = 2 (см. табл. 21), jf = 0 и 0,096 < 0,8:

Н·мм.

Поскольку в пределах между перемычками поперечная сила постоянна, длину проекции наклонного сечения принимаем максимально возможной, т. е.

мм < l = 160 мм.

Тогда

Так как 2 h 0 = 2 · 160 = 320 мм < с = 533 мм, принимаем с 0 = 2 h 0 = 320 мм.

Определим коэффициент æ:

æ

Поскольку 1,667 < æ = 1,866 < 3,33, интенсивность хомутов определим по формуле (63):

кН/м.

Максимально допустимый шаг хомутов, согласно п. 3.30, равен:

Кроме того, шаг хомутов, согласно п. 5.58, не должен превышать 2 h = 2 · 200 = 400 мм.

Принимаем шаг хомутов s = 100 мм < smax, тогда

мм2.

Принимаем два хомута диаметром по 10 мм (Asw = 157 мм2).





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 347 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2298 - | 2047 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.