Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Разложение в ряд Маклорена элементарных функций.




Стандартные разложения.

1..

Всё начинается с геометрической прогрессии. На первой лекции по рядам (см. раздел 18.1. Основные определения) мы доказали, что эта функция является суммой ряда , и ряд сходится к функции при . Итак,

.

Выпишем несколько разновидностей этого ряда. Заменив х на - х, получим

;

при замене х на получаем

; ;

и т.д.; область сходимости всех этих рядов одна и та же: .

2. .

Все производные этой функции в точке х =0 равны , поэтому ряд имеет вид

.

Область сходимости этого ряда - вся числовая ось (пример 6 раздела 18.2.4.3. Радиус сходимости, интервал сходимости и область сходимости степенного ряда), поэтому при . Как следствие, остаточный член формулы Тейлора . Поэтому ряд сходится к в любой точке х.

3..

Здесь

дальше производные периодически повторяются. Ряд Маклорена имеет вид

.

Этот ряд абсолютно сходится при , и его сумма действительно равна . Остаточный член формулы Тейлора имеетвид , где или - ограниченная функция, а (это общий член предыдущего разложения).

4..

Это разложение можно получить, как и предыдущие, последовательным вычислением производных, но мы поступим по другому. Почленно продифференцируем предыдущий ряд:

.

Сходимость к функции на всей оси следует из теоремы о почленном дифференцировании степенного ряда.

5. Самостоятельно доказать, что на всей числовой оси , .

6..

Ряд для этой функции называется биномиальным рядом. Здесь мы будем вычислять производные.

… Ряд Маклорена имеет вид

Ищем интервал сходимости: , следовательно, интервал сходимости есть . Исследование остаточного члена и поведение ряда на концах интервала сходимости проводить не будем; оказывается, что при ряд абсолютно сходится в обеих точках , при ряд условно сходится в точке и расходится в точке , при расходится в обеих точках.

7..

Здесь мы воспользуемся тем, что . Так как , то, после почленного интегрирования,

.

Область сходимости этого ряда - полуинтервал , сходимость к функции во внутренних точках следует из теоремы о почленном интегрировании степенного ряда, в точке х =1 - из непрерывности и функции, и суммы степенного ряда во всех точках, сколь угодно близких к х =1 слева. Отметим, что взяв х =1, мы найдём сумму ряда .

8. Почленно интегрируя ряд , получим разложение для функции . Выполнить все выкладки самостоятельно, выписать область сходимости.

9. Выпишем разложение функции по формуле биномиального ряда с : . Знаменатель представлен как , двойной факториал означает произведение всех натуральных чисел той же чётности, что и , не превосходящих . Разложение сходится к функции при . Почленно интегрируя его от 0 до х, получим . Оказывается, что этот ряд сходится к функции на всём отрезке ; при х =1 получаем ещё одно красивое представление числа : .

18.2.6.2. Решение задач на разложение функций в ряд. Большинство задач, в которых требуется разложить элементарную функцию в ряд по степеням , решается применением стандартных разложений. К счастью, любая основная элементарная функция имеет свойство, которое позволяет это сделать. Рассмотрим ряд примеров.

1. Разложить функцию по степеням .

Решение. . Ряд сходится при .

2. Разложить функцию по степеням .

Решение. . Область сходимости: .

3. Разложить функцию по степеням .

Решение. . Ряд сходится при .

4. Разложить функцию по степеням .

Решение. . Ряд сходится при .

5. Разложить функцию по степеням .

Решение. . Область сходимости .

6. Разложить функцию по степеням .

Решение. Разложение в ряд простых рациональных дробей второго типа получается почленным дифференцированием соответствующих разложений дробей первого типа. В этом примере . Дальше почленным дифференцированием можно получить разложения функций , и т.д.

7. Разложить функцию по степеням .

Решение. Если рациональная дробь не является простой, она сначала представляется в виде суммы простых дробей: , а затем действуем, как в примере 5: , где .

Естественно, такой подход неприменим, например, для разложения функции по степеням х. Здесь, если надо получить несколько первых членов ряда Тейлора, проще всего найти значения в точке х =0 требуемого количества первых производных.





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 727 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2359 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.