Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Свойства равномерно сходящихся рядов.




18.2.3.1. Теорема о непрерывности суммы равномерно сходящегося ряда непрерывных функций. Если члены функционального ряда - непрерывные функции, и этот ряд равномерно сходится на отрезке , то сумма этого ряда непрерывна на .

18.2.3.2. Теорема о почленном интегрировании равномерно сходящегося ряда. Пусть члены функционального ряда непрерывны на отрезке , и ряд равномерно сходится к своей сумме на этом отрезке: . Тогда , т.е. интеграл от суммы ряда равен сумме ряда, составленного из интегралов от членов равномерно сходящегося ряда.

18.2.3.3. Теорема о почленном дифференцировании равномерно сходящегося ряда. Пусть члены сходящегося ряда - дифференцируемые на отрезке функции, и ряд, составленный из производных , равномерно сходится на . Тогда ряд можно почленно дифференцировать, и , т.е. производная суммы ряда равна сумме ряда из производных.

Отметим тонкость, заключённую в этой теореме: для того, чтобы ряд можно было почленно дифференцировать, требуется равномерная сходимость не самого этого ряда, а ряда, составленного из производных его членов.

Эти свойства равномерно сходящихся рядов по нашей программе принимаются без доказательства; мы будем ими пользоваться при изучении степенных рядов. Однако уже сейчас мы можем сделать из этих теорем тонкие и важные выводы. Ряд - геометрическая прогрессия со знаменателем , поэтому его сумма равна : . Мы доказали, что этот ряд равномерно сходится на любом отрезке , целиком лежащем в области сходимости (-1,1), поэтому его можно почленно проинтегрировать в пределах от 0 до : . Вычисляя интегралы, получаем . Это не только неожиданное и красивое представление числа в виде ряда , но и удобный способ его вычисления с любой точностью с простой оценкой остатка по первому отброшенному члену, так как получен ряд Лейбницевского типа (см. раздел 18.1.4.2).

Степенные ряды.

18.2.4.1. Определение. Степенным рядом называется функциональный ряд вида ,

где - постоянные (коэффициенты ряда), - фиксированное число (центр сходимости). Степенной ряд имеет по меньшей мере одну точку сходимости - точку .

Все содержательные сведения о степенном ряде содержатся в теореме Абеля.

18.2.4.2. Теорема Абеля. Если степенной ряд сходится в точке , то

1. он абсолютно сходится в любой точке х, удовлетворяющей неравенству (т.е. находящейся ближе к точке , чем );

2. он сходится равномерно на любом отрезке , целиком лежащем на интервале (т.е. на интервале с центром в радиуса ).

3. Если этот ряд расходится в точке , то он расходится в любой точке х, удовлетворяющей неравенству (т.е. находящейся дальше от точки , чем ).

Доказательство. 1. Из сходимости ряда в точке следует, что его общий член стремится к нулю при ; любая последовательность, имеющая предел, ограничена, следовательно, существует число С такое, что . Пусть точка х удовлетворяет неравенству , тогда . Оценим член ряда в точке х:

. Члены ряда в точке х по абсолютной величине не превосходят членов сходящейся геометрической прогрессии, следовательно, ряд сходится абсолютно в точке х, следовательно, он сходится абсолютно в любой точке интервала .

2. Пусть отрезок , целиком лежит на интервале . Из точек а, b выберем ту, которая находится дальше от точки , примем для определённости, что это - точка а: . Тогда для любого х из этого отрезка . В точке ряд , по доказанному, сходится абсолютно, но он является на мажорантой для ряда , следовательно, степенной ряд сходится равномерно на отрезке .

3. Пусть степенной ряд расходится в точке , и . То, что ряд расходится в точке х, докажем от противного. Если предположить, что он сходится в точке х, то, по доказанному, он сходится во всех точках, расположенных ближе к , чем х, следовательно, он сходится в точке , что противоречит условию.

18.2.4.3. Радиус сходимости, интервал сходимости и область сходимости степенного ряда. Из теоремы Абеля следует, что существует такое число R (возможно, ) такое, что при степенной ряд сходится, при ряд расходится. Действительно, пусть в точке ряд сходится, в точке ряд расходится. Рассмотрим точку , расположенную между областями, в которых установлена сходимость и расходимость. В точке числовой ряд либо сходится, либо расходится. Если он сходится, то мы можем перенести точку в точку ; если ряд в точке расходится, мы переносим в точку . Продолжая этот процесс, мы сблизим точки и , эта граница и определит число R.

Определение. Число R такое, что при степенной ряд сходится, при ряд расходится, называется радиусом сходимости. Интервал называется интервалом сходимости степенного ряда.

Сходимость ряда в концевых точках интервала сходимости должна исследоваться отдельно. В зависимости от поведения ряда на концах интервала сходимости область сходимости степенного ряда может быть одной из следующих: , , , .

Итак, для определения области сходимости степенного ряда надо найти его интервал сходимости R, затем исследовать поведения ряда в концевых точках интервала сходимости .

Примеры. 1. . Для определения радиуса сходимости этого ряда целесообразно применить признак сходимости Дирихле. Однако этот признак, как и многие другие, может применяться только к положительному ряду, поэтому выпишем ряд, состоящий из абсолютных величин членов исследуемого ряда: . Применяем признак Дирихле: . Следовательно, . Мы нашли радиус сходимости R =3 и интервал сходимости . Исследуем поведение ряда на концах интервала: , ряд сходится. , ряд сходится абсолютно. Область сходимости - интервал [-7,7].

В следующих примерах решения будут излагаться кратко, без пояснений.

2. . Ряд из модулей: , признак Коши . - расходится, - расходится, область сходимости - интервал .

3. . Ряд из модулей: , признак Даламбера . - сходится условно, - расходится, область сходимости - полуинтервал .

4. . Решение такое же, как в предыдущем примере, однако ряд будет знакочередующимся в точке х =5; ответ: область сходимости - полуинтервал .

В заключение рассмотрим примеры, когда область сходимости вырождается в точку или всю числовую ось:

5. . Ряд из модулей: , признак Даламбера область сходимости - единственная точка х =0, .

6. . Ряд из модулей: , признак Даламбера в любой точке х, область сходимости - вся числовая ось .

18.2.4.4. Формулы для радиуса сходимости. Получим формулы, выражающие радиус сходимости степенного ряда через его коэффициенты. Ряд из модулей: ; применение к этому ряду признака Коши даёт .

Применение признака Даламбера даёт . Итак, .





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 963 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2430 - | 2176 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.