Для условно сходящихся рядов оказывается верным поразительный результат (теорема Римана): для любого числа , можно найти такой порядок членов условно сходящегося ряда, что этот ряд будет сходиться к числу S (т.е. сумма ряда будет равна S). Таким образом, перестановкой членов можно даже сделать сходящийся ряд расходящимся (если ).
Эти два утверждения мы примем без доказательства.
18.1.5.8. Умножение рядов. Пусть даны два ряда и . Под произведением рядов (А) и (В) понимается ряд, составленный из всевозможных попарных произведений членов рядов (А) и (В):
.
Оказывается, и здесь надо различать абсолютно и условно сходящиеся ряды. Если ряды (А) и (В) сходятся абсолютно к своим сумма и , то ряд (С) при произвольном порядке членов тоже сходится абсолютно, и его сумма равна . Для условно сходящихся рядов это утверждение несправедливо.
18.1.4. Знакопеременные ряды. Так мы будем называть ряды, которые содержат бесконечные множества как положительных, так и отрицательных членов. Естественно попытаться свести исследование сходимости таких рядов к исследованию сходимости рядов с положительными членами, для которых имеются рассмотренные выше тонкие признаки сходимости, поэтому введём понятие абсолютной сходимости.
18.1.4.1. Абсолютная и условная сходимость числовых рядов. Рассмотрим, вместе с рядом , ряд, составленный из модулей членов ряда (А): . Докажем теорему: если сходится ряд (| A |), то сходится исходный ряд (А).
Доказательство. Пусть сходится ряд (| A |). Это – сходящийся ряд, поэтому множество его частичных сумм , ограничено. В частичной сумме исходного ряда отделим множества неотрицательных и отрицательных членов; неотрицательным членам припишем индекс , у отрицательных членов вынесем знак за скобку и их модулям припишем индекс : ; здесь символом обозначена сумма входящих в положительных членов, обозначает сумму модулей входящих в отрицательных членов, . Итак, . Очевидно, что . - ограниченное множество, поэтому . Но , . Суммы тоже возрастают с ростом n и ограничены сверху, поэтому существуют конечные пределы . Но , поэтому существует конечный предел , т.е. исходный ряд (А) сходится, что и требовалось доказать.
Определение. Ряд называется абсолютно сходящимся, если сходится ряд абсолютных величин его членов. Если ряд сходится, а ряд расходится, то ряд называется условно сходящимся.
Доказанная теорема сводит исследование некоторых знакопеременных рядов к положительным рядам. Для знакопеременных рядов определённой структуры - знакочередующихся рядов - также существует достаточный признак сходимости.
Знакочередующиеся ряды.
Определение. Знакочередующимися называются ряды, члены которых поочерёдно то неотрицательны, то отрицательны.
Согласно этому определению, структура знакопеременных рядов такова:
, или , где все . Мы будем рассматривать первую из этих форм; вторая сводится к первой выносом знака за сумму.
Достаточный признак сходимости знакочередующегося ряда (признак Лейбница). Если
1. Последовательность, составленная из модулей членов знакочередующегося ряда, монотонно убывает, т.е. ;
2. Выполняется необходимый признак сходимости ряда, т.е. ,
то ряд сходится. Его сумма по абсолютной величине не превосходит абсолютную величину первого члена.
Доказательство. Рассмотрим последовательность чётных частичных сумм ряда. Представим эту сумму в виде . Из первого условия теоремы следует, что суммы в круглых скобках неотрицательны, поэтому последовательность монотонно возрастает с ростом n. С другой стороны, , т.е. эта последовательность ограничена сверху величиной . Следовательно . Но для нечётных сумм , так как по второму условию теоремы . Таким образом, частичные суммы имеют предел независимо от их четности или нечётности, т.е. ряд сходится, и его сумма . Знак суммы совпадает со знаком первого члена.
С помощью признака Лейбница доказывается сходимость рядов , . , и т.д. Третий из этих рядов сходится абсолютно ( сходится), остальные - условно (ряды из модулей членов расходятся). Естественно, существуют знакочередующиеся ряды, для которых условия теоремы Лейбница могут не выполняться; если не выполняется второе условие - необходимый признак сходимости - то ряд заведомо расходится; если не выполняется первое условие, то задача должна решаться с помощью других соображений. Рассмотрим, например, ряд Понятно, что первое условие теоремы Лейбница не выполняется (например, ), поэтому эта теорема неприменима и требуется изобрести индивидуальный способ решения этой задачи. Сгруппируем члены попарно: Сумма в скобке , поэтому последний ряд (со скобками) расходится. Последовательность чётных частичных сумм неограничена, поэтому исходный ряд расходится.
У теоремы Лейбница есть исключительно важный для приложений вывод - вывод о том, что сумма знакочередующегося ряда (или, как говорят, ряда лейбницевского типа) по модулю не больше модуля первого члена: . На нашем уровне нас интересует, в основном, вопрос о сходимости ряда, но при решении практических задач вслед за вопросом о сходимости ряда встаёт вопрос о нахождении его суммы. Основной метод суммирования рядов - вычисление его частичной суммы с количеством слагаемых, обеспечивающим заданную точность. Рассмотрим два примера: найти суммы рядов и с погрешностью, не превышающей . Оба ряда сходятся (пример 1 раздела 18.1.3.3.Признак сходимости Даламбера). Основная проблема здесь - найти, какое количество n слагаемых надо взять, чтобы частичная сумма отличалась от суммы ряда S не более, чем на . Так как , где - остаток ряда после n -го члена, и мы хотим принять , то должно быть . И здесь выясняется различие в технике оценки остатка для Лейбницевских рядов с одной стороны и произвольных рядов с другой стороны. Остаток знакочередующегося ряда - тоже знакочередующийся ряд, поэтому он подчиняется выводу теоремы Лейбница: . Другими словами, остаток знакочередующегося ряда по модулю не превосходит первый свой член (или первый отброшенный член ряда). Поэтому для первого из рассматриваемых рядов условие сводится к . Подбором убеждаемся, что первое значение n, для которого это условие выполняется, есть n =7 (7!=5040, 8!=40320), поэтому для нахождения суммы ряда с погрешностью, не превышающей величину , достаточно взять 7 слагаемых:
(при вычислениях с точностью до в промежуточных выкладках необходимо удерживать не меньше, чем 5 знаков после запятой. Дальше мы поймём, что вычислено значение с четырьмя верными цифрами после запятой).
Переходим ко второму ряду. Это знакопостоянный ряд, поэтому единственное, что мы можем сделать - напрямую оценить остаток ряда . Пока единственный ряд, для которого мы знаем выражение суммы - геометрическая прогрессия , поэтому надо в той или иной форме свести остаток к геометрической прогрессии. В данном случае это сделать просто: . Для каждого из слагаемых в круглой скобке верна оценка , поэтому . Ряд в круглых скобках - геометрическая прогрессия со знаменателем , его сумма равна , следовательно, . Теперь надо найти такое n, что . Перебором различных значений n убеждаемся, что и в этом случае можно взять n =7 (выражение равно 0,0002268 при n = 6 и 0,000028 при n = 8. Итак, . Это значение числа е с четырьмя верными цифрами после запятой.
18.1.5. Свойства сходящихся рядов и их сумм. В разделе 18.2. Свойства сходящихся рядов мы сформулировали и доказали некоторые из этих свойств. Напомним:
18.1.5.1. Необходимый признак сходимости ряда. Общий член сходящегося ряда стремится к нулю: .
18.1.5.2. Если сходится ряд, то сходится любой его остаток, Обратно, если сходится какой-нибудь остаток ряда, то сходится и сам ряд.
18.1.5.3. Если ряд сходится, то сумма его остатка после n -го члена стремится к нулю при .
18.1.5.4. Если все члены сходящегося ряда умножить на одно и то же число с, то сходимость ряда сохранится, а сумма умножится на с.
18.1.5.5. Два сходящихся ряда можно почленно складывать и вычитать, полученный ряд также сходится, и его сумма равна, соответственно, сумме или разности исходных рядов.
Сформулируем ещё несколько свойств сходящихся рядов.
18.1.5.6. Сочетательное свойство сходящегося ряда. Если члены сходящегося ряда сгруппировать произвольным образом: (здесь - строго возрастающая последовательность натуральных чисел), и составить новый ряд из сумм членов в каждой паре круглых скобок, то этот новый ряд тоже будет сходиться, и его сумма будет равна сумме исходного ряда.
Доказательство. Последовательность частичных сумм нового ряда является подпоследовательностью последовательности частичных сумм исходного ряда и сходится к той же сумме.
Все сформулированные свойства полностью аналогичны свойствам конечных сумм, хотя и здесь есть свои тонкости. Так, для конечных сумм можно не только расставлять, но и раскрывать скобки; при этом сумма не меняется. Для рядов это неверно. Пример: если в сходящемся ряде 0+0+0+…+0+… = (1-1) + (1-1)+(1-1)+….+(1-1)+… раскрыть скобки, то получится расходящийся ряд 1-1+1-1+1-1+…. Конечно, если после раскрытия скобок получится сходящийся ряд, его сумма будет такой же, как и у ряда со скобками; это следует из доказанного сочетательного свойства.
18.1.5.7. Переместительное свойство ряда. Ещё больше отличаются поведение конечных сумм и рядов по отношению к переместительному свойству, т.е. к перестановке слагаемых. Если для конечных сумм результат не зависит от порядка слагаемых, то для рядов это не всегда верно. Ряд условно сходится, обозначим его сумму S: . Умножим этот ряд на . Запишем этот ряд так: Почленно сложим этот ряд и ряд S:
. Итак, . Этот ряд отличается от ряда S только порядком слагаемых, однако его сумма в полтора раза больше.
На перестановку членов резко по разному реагируют абсолютно и условно сходящиеся ряды.