Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задача. Дано: плоскость AВС и прямая а.




Требуется найти точку пересечения прямой с плоскостью и определить видимость прямой по отношению к плоскости.

Для решения задачи:

1. Через горизонтальную проекцию прямой а 1 проведем вспомогательную горизонтально проецирующую плоскость g (таким образом а g Î).

2. Горизонтальный след плоскости g1 пересекает проекцию плоскости A 1 В 1 С 1 в точках D 1 и F 1, которые определяют положение горизонтальной проекции п 1 - линии пересечения плоскостей g и AВС. Для нахождения фронтальной и профильной проекции п спроецируем точки D и F на фронтальную и профильную плоскости проекций.

3. На фронтальной и профильной проекциях линия пересечения плоскостей п пересекает проекции а в точке К, которая и является проекцией точки пересечения прямой а с плоскостью AВС, по линии связи находим горизонтальную проекцию К 1.

4. Методом конкурирующих точек определяем видимость прямой а по отношению к плоскости AВС.

  а) модель   б) эпюр
Рисунок 5.21. Нахождение точки пересечения прямой и плоскости
       

Таким образом алгоритм решения задачи состоит из следующей последовательности действий (рис.5.21):

1. Построение вспомогательной секущей плоскости g ( горизонтально – проецирующая плоскость ), которую проводят через прямую а (а)gÎ;

2. Построение линии пересечения вспомогательной плоскости g и заданной плоскости a (п)gÇa=;

3. Определение искомой точки К, как точки пересечения двух прямых, заданной - а и полученной в результате пересечения плоскостей – п (К = а Ç п). В качестве вспомогательной плоскости g рекомендуется брать одну из проецирующих плоскостей.

4. Определение видимости прямой а относительно плоскости a.

  Прямая линия перпендикулярная плоскости.

Докажем следующую теорему о перпендикуляре к плоскости: Если прямая перпендикулярна плоскости, то горизонтальная проекция этой прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция – фронтальной проекции фронтали плоскости.

Пусть прямая n, перпендикулярная плоскости, пересекает плоскость BCD в точке N, тогда по условию n перпендикулярна любой прямой плоскости. Проведем в плоскости BCD горизонталь h, а на основании теоремы о проецировании прямого угла можно утверждать, что на горизонтальную плоскость проекций они проецируются под прямым углом, т.е. n 1 ^h1. Аналогично для фронтали – f ^ n Þ f2 ^ n 2.

Справедлива и обратная теорема: Если проекции прямой перпендикулярны одноименным проекциям соответствующих главных линий плоскости (горизонтали и фронтали), то такая прямая перпендикулярна плоскости.

Доказательство следует из теоремы о проецировании прямого угла.

Исходя из рассмотренных теорем, можно решить задачу о построении перпендикуляра к плоскости из точки А (рис.5.22).





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 498 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2437 - | 2356 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.