Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задача. Дана плоскость (n,k) и одна проекция прямой m2.




Требуется найти недостающие проекции прямой m если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k.

Проекция прямой m 2 пересекает прямые n и k в точках В 2 и С 2, для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек лежащих на прямых соответственно n и k.

Таким образом точки В и С принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит согласно аксиоме прямая принадлежит этой плоскости.

      а) модель   б) эпюр
Рисунок 5.14. Прямая и плоскость имеют две общие точки
           

Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости (рис.5.15).

Задача.

Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k.

Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В 2 проведем проекцию прямой m 2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1.

Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.

  а) модель   б) эпюр
Рисунок 5.15. Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости
       

 

  Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:

1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (hÎ СВА, hP1, h2Ох,h3Оy) (рис.5.16).

  а) модель   б) эпюр
Рисунок 5.16. Горизонталь  
       

2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (fÎ СВА, fP2, f1Ох, f3Оz) (рис.5.17).

  а) модель   б) эпюр
Рисунок 5.17. Фронталь  
       

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (рÎ СВА, рP3, р1^Ох, р2^Ох) (рис.5.18).

  а) модель   б) эпюр
Рисунок 5.18. Профильная прямая  
       

Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.

4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j, которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.5.19).

  а) модель   б) эпюр
Рисунок 5.19. Линия наибольшего ската
       

Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.


 

Прямая линия, параллельная плоскости

При решении вопроса о параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскостии не принадлежит этой плоскости.

Задача. Дано: проекции плоскости общего положения ABC и прямой общего положения а.

Требуется оценить их взаимное положение (рис.5.20).

  а) модель   б) эпюр
Рисунок 5.20. Прямая параллельная плоскости
       

Для этого через прямую а проведем вспомогательную секущую плоскость g - в данном случае горизонтально проецирующая плоскость. Найдем линию пересечения плоскостей g и АВС - прямую п (DF). Проекция прямой п на горизонтальную плоскость проекций совпадает с проекцией а 1 и со следом плоскости g. Проекция прямой п 2 параллельна а2, п 3 параллельна а3, следовательно, прямая а параллельна плоскости AВС.

 

  Прямая линия, пересекающая плоскость

Нахождение точки пересечения прямой линии и плоскости – основная задача начертательной геометрии.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 575 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2376 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.