Важная особенность гипоксии циркуляторного типа — возможность развития локальной и системной ее форм.
· Локальная циркуляторная гипоксия, возникающая по следующим причинам.
à Местные расстройства кровообращения (венозная гиперемия, ишемия, стаз).
à Регионарные нарушения диффузии кислорода из крови к клеткам и их митохондриям.
· Системная циркуляторная гипоксия, возникающая по следующим причинам.
à Гиповолемия.
à Сердечная недостаточность.
à Генерализованные формы снижения тонуса сосудов.
Типичные изменения газового состава и рН крови при циркуляторной гипоксии представлены на рисунке 16-3. К ним относят:
Ú снижение рvО2 — венозная гипоксемия;
Ú нормальное (как правило) раО2;
Ú увеличение артериовенозной разницы по кислороду (за исключением вариантов с масштабным «сбросом» крови по артериовенозным шунтам минуя капиллярную сеть);
Ú негазовый ацидоз;
Ú снижение SvО2 (исключение — гипоксия при артериовенозном шунтировании).
Ы верстка! вставить рисунок «рис-16-3» Ы
Рис. 16-3. Типичные изменения газового состава и рН крови при гипоксии сердечно-сосудистого типа. * АВР — артерио-венозная разница по кислороду.
Гемический тип гипоксии
Причина кровяной (гемической) гипоксии — снижение эффективной кислородной емкости крови и, следовательно, ее транспортирующей кислород функции.
Hb — оптимальный переносчик кислорода. Транспорт кислорода от легких к тканям почти полностью осуществляется при участии Hb. Наибольшее количество кислорода, которое способен переносить Hb, равно 1,39 мл газообразного O2 на 1 г Hb.
Реально транспортная способность Hb определяется количеством кислорода, связанного с Hb, и количеством кислорода, отданного тканям. При насыщении Hb кислородом в среднем на 96% кислородная емкость артериальной крови (VaO2) достигает примерно 20% (объемных). В венозной крови этот показатель приближается к 14% (объемным). Следовательно, артерио-венозная разница по кислороду составляет 6%.
Патогенез гемической гипоксии
Главные звенья механизма снижения кислородной емкости крови — уменьшение содержания Hb в единице объема крови (и, как правило, в организме в целом) и нарушения транспортных свойств Hb, т.е. анемия (см. главу 23).
Гемический тип гипоксии характеризуется снижением способности Hb эритроцитов связывать кислород (в капиллярах легких), транспортировать и отдавать оптимальное количество его в тканях. При этом реальная кислородная емкость крови может снижаться до 5–10 % (объемных).
Уменьшение содержания Hb в единице объема крови наблюдается при существенном уменьшении числа эритроцитов и/или снижении содержания Hb (иногда до 40–60 г/л), т.е. при выраженных анемиях.
Нарушения транспортных свойств Hb (гемоглобинопатии) обусловлены изменением способности Hb к оксигенации в крови капилляров альвеол и дезоксигенации в капиллярах тканей. Эти изменения могут быть наследуемыми или приобретенными.
Наследуемые гемоглобинопатии вызваны мутациями генов, сопровождающимися нарушением аминокислотного состава глобинов. Существует множество наследственных гемоглобинопатий. Так, в каталоге OMIM наследственных болезней человека (каталог профессора Виктора МакКьюсика) зарегистрировано не менее 700 аллелей глобинов. См. также статьи «Гемоглобин» и «Гемоглобинопатии» в приложении «Справочник терминов».
Приобретенные гемоглобинопатии чаще всего вызваны повышенным содержанием в крови метгемоглобинообразователей, окиси углерода, карбиламингемоглобина, нитроксигемоглобина.
Метгемоглобинообразователи — группа веществ, обусловливающих переход иона железа из закисной формы (Fe2+) в окисную (Fe3+). Последняя форма обычно находится в связи с OН–. К метгемоглобинообразователям относят нитраты, нитриты, хиноны, соединения хлорноватистой кислоты, некоторые ЛС (сульфаниламиды, фенацетин Ã, Ы автору! препарата нет в реестре зарегистрированных лекарственных средств! Ы амидопирин Ã Ы автору! препарата нет в реестре зарегистрированных лекарственных средств! Ы), эндогенные перекисные соединения. Образование метгемоглобина (MetHb) — обратимый процесс. Устранение метгемоглобинообразователя из организма сопровождается переходом (в течение нескольких часов) железа Hb в закисную форму. Участвующая в этом процессе МК дегидрируется в пировиноградную. MetHb не способен переносить кислород. В связи с этим кислородная емкость крови снижается. Учитывая, что MetHb имеет темно-коричневую окраску, кровь и ткани организма также приобретают соответствующий оттенок.
Окись углерода обладает высоким сродством (почти в 300 раз больше по сравнению с кислородом) к Hb. Окись углерода содержится в достаточно высокой концентрации в выхлопных газах двигателей внутреннего сгорания, работающих на бензине или керосине; в бытовом газе; в составе многих газов, образующихся в литейном производстве; при обжиге кирпича; при получении ацетона, метанола, аммиака и ряда других веществ. При взаимодействии окиси углерода с Hb образуется карбоксигемоглобин (HbCO), теряющий способность транспортировать кислород к тканям. Количество образующегося HbCO прямо пропорционально рCO и обратно пропорционально рО2 в воздухе. Выраженные нарушения жизнедеятельности организма развиваются при увеличении содержания HbCO в крови до 50% (от общей концентрации Hb). Повышение его уровня до 70–75% приводит к выраженной гипоксемии и смерти. Устранение CO из вдыхаемого воздуха обусловливает диссоциацию HbCO, но этот процесс протекает медленно и занимает несколько часов. HbCO имеет ярко-красный цвет. В связи с этим при его избыточном образовании в организме кожа и слизистые оболочки становятся красными.
Другие соединения Hb (например, карбиламингемоглобин, нитроксигемоглобин), образующиеся под влиянием сильных окислителей, также снижают транспортную способность Hb и вызывают развитие гемической гипоксии.
Образование и диссоциация HbO2 во многом зависят от физико-химических свойств плазмы крови. Изменения рН, осмотического давления, содержания 2,3-дифосфоглицерата, реологических свойств снижает транспортные свойства Hb и способность HbO2 отдавать кислород тканям.