Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Глава шестая Наука и техника в античности 3 страница




вес сегм. 2βγ/вес треуг. αζγ = площадь сегм. αβγ/площадь треуг. αζγ = κχ/κϑ

Из геометрии мы знаем, что κχ = 1/3 κγ. Отсюда·: площадь сегм. αβγ/площадь треуг. αζγ = κγ/ζκϑ = 1/3

Площадь треугольника αζγ = 1/2 * αζ * αγ,

Из чертежа, однако, явствует, что αζ = 2δε = 4δβ. В результате приходим к окончательному ответу:

площадь сегм. αβγ = 4/3 (1/2 * δβ * αγ) = 4/3 площ. треуг. αβγ

Несмотря на недостаточную строгость механического метода, полученное соотношение оказывается абсолютно точным. Тем не менее во второй части трактата Архимед дает второе (геометрическое) доказательство, где тот же результат получается с помощью метода исчерпывания Эвдокса (рис. 7). При этом Архимед указывает, что в ходе доказательства он пользуется следующим предположением:

«Если имеются две неравные площади, то, постоянно прибавляя к самому себе избыток, на который большая площадь превосходит меньшую, можно получить площадь, которая была бы больше любой заданной ограниченной площади»[293].

Рис. 7. Определение площади параболы методом «исчерпывания»

 

Архимед сообщает, что «этой леммой пользовались также и жившие ранее геометры». Он имеет в виду, по-видимому, Эвдокса и Эвклида. Эвдокс, впервые и в самом общем виде (для любых величин, а не только для площадей) сформулировавший это положение, использовал его для разработки своей теории отношений, изложенной в пятой книге «Элементов» Эвклида; в свою очередь, Эвклид доказал с его помощью теоремы о площади круга и об объемах шара, пирамиды и конуса (двенадцатая книга «Элементов»). Таким образом, автором этого положения был фактически Эвдокс, хотя в позднейшей математической литературе оно получило наименование «аксиомы Архимеда».

Основная идея геометрического доказательства для той же задачи состоит в следующем. Снова рассматривается параболический сегмент, в который вписан треугольник αβγ. Площадь этого треугольника обозначим буквой A и, положим K =4/3 A. Площадь сегмента может быть либо равна K, либо не равна K. В последнем случае она может быть либо больше K, либо меньше K. Архимед

показывает, что оба этих предположения приводят к абсурду. Делается это следующим образом.

Разделив основание сегмента на четыре равные части (рис. 2), проведем вертикальные отрезки εζ || δβ || ηϑ и построим на сторонах αβ и βγ треугольники αζβ и γβϑ. Нетрудно показать (и Архимед это делает), что суммарная площадь этих двух треугольников будет в четыре раза меньше A. Аналогичным образом, разделив αγ на восемь равных частей, построим на отрезках αζ, ζβ, βϑ и ϑγ четыре треугольника, суммарная площадь которых будет равна одной шестнадцатой A. Продолжая эту процедуру n раз, мы найдем, что площадь вписанного в сегмент многоугольника, ограниченного снизу основанием αγ, а сверху — ломаной линией, состоящей из 2n+1 отрезков, будет выражаться суммой членов геометрической прогрессии

A + A /4 + A /42 +… + A /4 n

Мы сразу видим, что при n — > ∞ эта сумма будет иметь своим пределом выражение:

A /(1–1/4) =4/3 A = K

Однако в эпоху Архимеда с бесконечными рядами еще не умели оперировать, поэтому Архимед ограничивается рассмотрением ряда с конечным числом членов и показывает, что разность между K и суммой этого ряда будет равна одной трети последнего члена ряда (т. е. в наших обозначениях 1/3 * A /4 n). Ясно, что, увеличивая число членов ряда, мы можем эту разность сделать меньше любой наперед заданной величины. С другой стороны, эта разность представляет собой площадь остающихся мелких сегментов, на которую площадь параболического сегмента αζβϑγ превосходит площадь вписанного в этот сегмент многоугольника, построенного указанным выше образом из последовательно уменьшающихся треугольников. Отсюда следует, что площадь параболического сегмента αζβϑγ не может превосходить K на конечную величину, ибо тогда получилось бы, что площадь вписанного многоугольника, выражающаяся суммой (3), могла бы стать больше K, что, как мы видели, не может иметь еста. Очевидно, что и K не может превосходить площадь параболического сегмента αζβϑγ на конечную величину, ибо тогда площадь вписанного многоугольника сможет стать больше площади αζβϑγ, что также абсурдно. Следовательно, площадь параболического сегмента αζβϑγ равна K = 4/3 A.

Мы специально задержались на рассмотрении трактата «Квадратура параболы», чтобы показать различие между механическим и геометрическим методами доказательства, которыми пользовался Архимед. В последующих письмах к Досифею (два письма «О шаре и цилиндре», затем «О коноидах и сфероидах» и «О спиралях») мы уже не находим механического метода, зато геометрический метод подвергается им значительному усовершенствованию. А именно, в отличие от метода исчерпывания Эвдокса (примером которого может служить процедура, примененная Архимедом в «Квадратуре параболы») усовершенствованный метод Архимеда состоял в том, что подлежащая определению величина заключалась между двумя интегральными суммами, разность которых могла быть сделана меньше любой наперед заданной величины. Искомая величина находилась при этом как общий предел обеих сумм при безграничном увеличении числа слагаемых, что было эквивалентно задаче о вычислении определенного интеграла. При определении поверхности шара, при нахождении объема сегментов параболоида и гиперболоида, а также эллипсоида вращения Архимед, по сути дела, вычислял интегралы:

Этим же методом Архимед решал и более трудные задачи — определения длин дуг и площадей ряда кривых поверхностей.

Трудно сказать, осознавал ли Архимед, что в каждой из рассмотренных им задач речь шла об одном и том же математическом понятии — понятии определенного интеграла. Во всяком случае, у него еще не было средств, чтобы дать общее определение интеграла.

Наряду с методами вычисления площадей и объемов Архимед разработал метод определения касательной к кривой, который можно считать предвосхищением дифференциального исчисления, поскольку он фактически сводится к нахождению производной. По каким-то причинам этот метод фигурирует только в письме «О спиралях», где он применяется для определения касательной к спирали ρ = αφ (так называемая Архимедова спираль), однако рассуждения Архимеда имеют общий характер и применимы к любой дифференцируемой кривой. Тем же методом Архимед пользуется для нахождения экстремальных значений алгебраических выражений, которые могут быть выражены в виде геометрических кривых. В частности, пользуясь современной терминологией, можно сказать, что он провел полное исследование существования положительных корней кубического уравнения определенного вида. Проблема определения экстремальных значений сводится Архимедом к проблеме нахождения касательной к соответствующей кривой.

Математические методы Архимеда оказали громадное влияние на развитие математики нового времени. Упомянем работы таких математиков XVII столетия, как Лука Валерио («Три книги о центре тяжести», 1604), Григорий Сен-Венсан («Геометрический труд о квадратуре круга и конических сечений», опубликован в 1647 г.), Пауль Гульдин (четыре книги «О центре тяжести», 1635–1641), Бонавентура Кавальери («Геометрия, развитая новым способом при помощи неделимых непрерывного», 1635; а также продолжение этого труда — «Шесть геометрических этюдов», 1647), Эванджелиста Торричелли («Геометрические труды», 1644) и другие. Во всех этих работах использовались и развивались процедуры, применявшиеся для решения аналогичных задач Архимедом, и тем самым подготавливалась великая революция в математике, выразившаяся в создании анализа бесконечно малых в трудах Ньютона и Лейбница. Можно только согласиться с И. Н. Веселовским, назвавшим Архимеда «ведущим математиком XVII в.»[294].

Переход к чисто геометрическим доказательствам не означал, что Архимед перестал признавать эвристическую ценность метода, основанного на механических аналогиях. Это ясно следует из его позднего, сравнительно недавно найденного сочинения, получившего наименование «Эфод»[295] (его полное греческое заглавие таково: Περί τών μηχανικών ϑεορημα τών προς Έρατοσϑένην ίφοδος). Рукопись этого сочинения была обнаружена в одном из иерусалимских монастырей приват-доцентом Петербургского университета, греком по национальности, Пападопуло Керамевсом, который увидел, что под текстов какого-то духовного содержания на пергаменте заметен другой, значительно более старый текст. Этот палимпсест был тщательно изучен в 1906–1908 гг. известным датским филологом И. Л. Хейбергом, установившим, что первоначальный текст содержит значительную часть трактата «О плавающих телах», а также «Эфод», ранее известный лишь по отдельным цитатам в «Метрике» Герона. Обнаружение и прочтение столь замечательного пергамента принадлежит, бесспорно, к числу значительнейших открытий классической филологии нашего века.

«Эфод» написан в форме письма Архимеда к Эратосфену. В нем Архимед приводит целую серию теорем, доказательства которых были им найдены сперва механическим методом (среди них содержится, между прочим, и теорема о квадратуре параболы). Во вступительной части письма Архимед пишет по этому поводу следующее: «Зная, что ты являешься… ученым человеком и по праву занимаешь выдающееся место в философии, а также при случае можешь оценить и математическую теорию, я счел нужным… изложить тебе некоторый особый метод, при помощи которого ты получишь возможность при помощи механики находить некоторые математические теоремы. Я уверен, что этот метод будет тебе ничуть не менее полезен и для доказательства самих теорем. Действительно, кое-что из того, что ранее было мною усмотрено при помощи механики, позднее было доказано также и геометрически, так как рассмотрение при помощи этого метода еще не является доказательством, однако получить при помощи этого метода некоторое предварительное представление об исследуемом, а затем найти и само доказательство гораздо удобнее, чем производить изыскания ничего не зная. Поэтому и относительно тех теорем о конусе и пирамиде, для которых Эвдокс первый нашел доказательство, а именно что всякий конус составляет третью часть цилиндра, а пирамида — третью часть призмы с тем же основанием и равной высотой, немалую долю заслуги я уделю и Демокриту, который первый высказал это положение относительно упомянутых фигур, хотя и без доказательства. И нам довелось найти публикуемые теперь теоремы тем же самым методом, как и предыдущие; поэтому я и решил написать об этом методе и обнародовать его, с одной стороны, для того, чтобы не оставались пустым звуком прежние мои упоминания о нем, а с другой — поскольку я убежден, что он может принести математике немалую пользу; я предполагаю, что некоторые современные нам или будущие математики смогут при помощи указанного метода найти и другие теоремы, которые нам еще не приходили в голову»[296].

Непосредственное отношение к теоретической механике имеет трактат Архимеда «О равновесии плоских фигур» (Περί επιπέδων ισορροπιών). Он состоит из двух частей. В первой части Архимед дает строго аксиоматический вывод закона равновесия рычага и определяет центры тяжести параллелограмма, треугольника и трапеции. Во второй части вычисляются центры тяжести параболического сегмента и параболической трапеции.

По поводу времени написания этого сочинения существуют различные мнения. Английский историк математики Т. Л. Хит, а у нас С. Я. Лурье считали, что первая часть трактата «О равновесии плоских фигур» относится к раннему периоду творчества Архимеда, когда он был занят проблемами центра тяжести и равновесия рычага[297]. Вторую часть трактата Хит относит к более позднему времени, когда уже была написана «Квадратура параболы». И. Н. Веселовский выражал свое несогласие с таким разделением трактата на два различных по времени создания сочинения и приводил по этому поводу ряд соображений, которые нам представляются достаточно вескими[298]. Вкратце эти соображения сводятся к следующему.

Как первая, так и вторая часть трактата резко отличаются по своему стилю от работ Архимеда раннего периода. Так, например, в «Квадратуре параболы» еще очень заметна механическая основа, на которой строится первое доказательство: говорится о рычагах, о подвешенных грузах, о равновесии, которое предполагается практически осуществимым, т. е. устойчивым, и т. д. Ничего этого нет в трактате «О равновесии плоских фигур». Он начинается с формулировки семи аксиом, из которых с помощью чистой дедукции выводится закон рычага. Вот эти аксиомы:

«1. Равные тяжести на равных длинах уравновешиваются, на неравных же длинах не уравновешиваются, но перевешивают тяжести па большей длине.

2. Если при равновесии тяжестей на каких-нибудь длинах к одной из тяжестей будет что-нибудь прибавлено, то они не будут уравновешиваться, но перевесит та тяжесть, к которой было прибавлено.

3. Точно так же если от одной из тяжестей будет отнято что-нибудь, то они не будут уравновешиваться, но перевесит та тяжесть, от которой не было отнято.

4. При совмещении друг с другом равных и подобных плоских фигур совместятся друг с другом и их центры тяжести.

5. У неравных же, но подобных фигур центры тяжести будут подобно же расположены. (Под подобным расположением точек в подобных фигурах мы подразумеваем такое, в котором прямые, проведенные из этих точек к вершинам равных углов, образуют равные углы с соответственными сторонами.)

6. Если величины уравновешиваются на каких-нибудь длинах, то на тех же самых длинах будут уравновешиваться и равные им.

7. Во всякой фигуре, периметр которой везде выпукл в одну и ту же сторону, центр тяжести должен находиться внутри фигуры»[299].

Мы видим, что эти аксиомы отчетливо распадаются на две группы. К первой группе относятся первая, вторая, третья и шестая аксиомы, лежащие в основе теории рычага. В аксиомах четвертой, пятой и седьмой говорится о центрах тяжести плоских фигур, причем само понятие центра тяжести считается хорошо известным. Связь между обеими группами аксиом становится очевидной в ходе последующих доказательств, причем эти доказательства имеют крайне формальный характер: место физического рычага занимают простые геометрические линии, и само равновесие становится каким-то неопределенным, отвлеченно-математическим; теоремы доказываются большей частью от противного, причем это относится в равной мере как к первой, так и ко второй части трактата. Материал первой книги подготавливает все необходимое для доказательства теорем второй книги, причем между предложениями обеих частей имеется тесная логическая связь.

Таким образом, следует принять тезис о достаточно позднем времени написания трактата «О равновесии плоских фигур». В этом сочинении Архимед решил придать строгую математическую форму результатам, которые были получены им значительно раньше.

Заметим, что Э. Мах, относившийся с недоверием ко всякому применению формально-дедуктивных методов к механике, полагал, что логическая строгость архимедовской теории рычага является мнимой. По его мнению, теоремы шестая и седьмая трактата, гласящие, что как соизмеримые, так и несоизмеримые величины уравновешиваются на длинах, обратно пропорциональных тяжестям, не могут быть выведены из приведенных выше семи аксиом без привлечения опытных данных. Вот что он писал по этому поводу в «Механике».

«Хотя результаты, полученные Архимедом и последующими исследователями, с первого взгляда и кажутся чрезвычайно поразительными, тем не менее у нас возникают при более точном рассмотрении сомнения в правильности их. Из одного допущения равновесия равных грузов на равных расстояниях выводится обратная пропорциональность между грузом и плечом рычага! Как же это возможно?. Раз уже одну голую зависимость равновесия от груза и расстояния вообще невозможно было измыслить из себя, а необходимо было заимствовать из опыта, то тем менее нам удастся найти спекулятивным путем форму этой зависимости, пропорциональность»[300].

Точка зрения Маха вызвала оживленную дискуссию среди историков науки. Мы не имеем возможности останавливаться на этой дискуссии, так как это заняло бы слишком много места; ограничимся ссылкой на И. Н. Веселовского, который утверждал, что доказательства Архимеда оказываются совершенно безупречными, если разобраться в смысле шестой аксиомы, которая на первый взгляд кажется чистой тавтологией (именно так, по-видимому, воспринимал ее Мах). Этот смысл состоит в следующем: «Действие груза, приложенного в данной точке, определяется только его величиной, т. е. совершенно не зависит от его формы или ориентации».

Понимаемая таким образом шестая аксиома позволяет заменить несколько масс одной, помещенной в центре их тяжести; в этом смысле она и употребляется Архимедом при доказательстве теорем шестой и седьмой первой книги (а также теоремы первой второй книги). Доказательство закона рычага приобретает теперь вполне строгую логическую форму[301].

Так или иначе, трактат Архимеда «О равновесии плоских фигур» считался на протяжении ряда веков образцом математической строгости. Наряду с письмами к Досифею он тщательнейшим образом изучался математиками XVII в., среди которых, помимо перечисленных выше ученых, были такие гиганты, как Галилей и Гюйгенс.

Особое положение в научном наследии Архимеда занимает трактат «О плавающих телах» (Περί των όχουμένων), состоящий из двух книг. Это, по-видимому, одно из последних, если не самое последнее сочинение великого сиракузца. В пользу этого предположения говорит явная незаконченность конца второй книги. Тем не менее этот трактат можно считать едва ли не высшим достижением Архимеда, свидетельствующим о том, что до конца своих дней (прерванных, как известно, злосчастным ударом меча римского воина) Архимед находился в расцвете своих творческих потенций.

Интересна позднейшая история этого трактата. В XIII столетии один из немногих в то время знатоков греческого языка — Вильгельм Мербеке (ум. 1282 г.) выполнил по просьбе Фомы Аквинского перевод ряда сочинений Архимеда (а также других греческих ученых) на латынь. Среди переведенных сочинений был и трактат «О плавающих телах». Вскоре после этого греческая рукопись трактата была каким-то образом утеряна. В течение нескольких столетий трактат оставался известен лишь в переводе Меркебе. И лишь в начале XX в. Хейберг обнаружил около трех четвертей оригинального текста трактата на том самом палимпсесте, на котором был записан и «Эфод».

Первая часть трактата «О плавающих телах» начинается с предположения, которое можно было бы назвать физической аксиомой, если бы оно не заключало в себе целую физическую концепцию:

«Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-либо сосуде и не сдавливается еще чем-нибудь другим»[302].

Рассмотрение жидкости как среды, которую можно рассматривать как совокупность бесчисленного множества прилегающих друг к другу частиц, стало в дальнейшем общепринятым приемом физики сплошных сред и не имеет никакого отношения к анатомистике. У Архимеда мы встречаемся с этим приемом впервые.

Предположение, которое мы процитировали, используется Архимедом для вывода целого ряда важных теорем. Первые две из них устанавливают следующее свойство жидкости: «Поверхность всякой жидкости, установившейся неподвижно, будет иметь форму шара, центр которого совпадает с центром Земли»[303]. Мы теперь знаем, что это свойство (сформулированное, кстати сказать, еще Аристотелем в трактате «О небе»[304]) имеет приблизительный характер и не соблюдается у жидкостей, заключенных в узкие сосуды. Но для жидкостей, находящихся в больших бассейнах, для озер, морей и океанов, доказанная Архимедом теорема безусловно справедлива.

Отметим, что эта теорема не получила немедленного признания среди ученых того времени, хотя она, казалось бы, была логическим следствием положения о шарообразности Земли. С ней не был согласен даже друг Архимеда Эратосфен — тот самый Эратосфен, который впервые получил точные данных о размерах земного шара. В первой книге «Географии» Страбона мы находим следующее свидетельство: «Разве не смешно теперь видеть, как математик Эратосфен отказывается признать установленный Архимедом в сочинении «О плавающих телах» принцип, что поверхность всякой покоящейся жидкости принимает форму шара, центр которого совпадает с центром Земли, а ведь это принцип, который теперь принимается всяким мало-мальски знающим математику»[305].

Далее в трактате Архимеда следуют пять теорем, которые мы также процитируем дословно: «III. Тела, равнотяжелые с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости и не будет двигаться вниз… <…> IV. Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью жидкости… <…> V. Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погруженной (части тела), имел вес, равный весу всего тела… <…> VI. Тела, более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела… <….> VII. Тела, более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела…»[306]

Эти теоремы образуют фундамент новой науки, созданной Архимедом и получившей впоследствии наименование гидростатики. Доказав эти теоремы, Архимед навеки обессмертил свое имя, ибо содержащийся в них физический закон известен в настоящее время каждому школьнику как закон Архимеда.

Дальнейшая часть трактата представляет собой приложение закона Архимеда к некоторым частным случаям, В конце первой книги Архимед рассматривает условия равновесия сегмента шара, опущенного в жидкость и имеющего плотность меньшую плотности жидкости (по формулировке Архимеда — «более легкого, чем жидкость»),

Вторая часть трактата начинается со следующей теоремы:

«Если какое-нибудь тело более легкое, чем жидкость, опустить в эту жидкость, то оно по тяжести будет находиться в том же отношении с жидкостью, какое погрузившийся ниже уровня жидкости объем имеет ко всему объему»[307].

Эта теорема является непосредственным следствием закона Архимеда и в настоящее время носит наименование «принципа ареометра»[308]. Вслед за этим Архимед детально рассматривает условия равновесия погруженного в жидкость прямоугольного коноида (под прямоугольным коноидом он понимает сегмент параболоида вращения, отсеченного плоскостью перпендикулярной к оси). При этом Архимед рассматривает различные случаи: когда основание сегмента не касается жидкости, когда оно касается жидкости в одной точке, когда оно целиком погружено в жидкость и т. д. Это рассмотрение в дошедшем до нас тексте оказывается не совсем полным, что и заставляет нас предположить, что трактат «О плавающих телах» не был закончен Архимедом. В приложении к сочинениям Архимеда И. Н. Веселовский показывает, что могло бы стоять в ненаписанной части трактата и дает полную формулировку результатов исследования Архимеда[309].

Мы не можем здесь входить в детали метода, используемого Архимедом при рассмотрении отдельных случаев равновесия плавающего параболоида. Математическая сторона этого метода поражает простотой и изяществом; что же касается его физической основы, то она состоит в следующем. Архимед находит положение равновесия, определяя, будет ли параболоид, отклоненный от этого положения, возвращаться в него или нет. Если будет, то найденное положение соответствует положению устойчивого равновесия. В принципе этот метод лишь в деталях отличается от метода, разработанного во второй половине XIX в. французским математиком Ш. Дюпеном и профессором Московского университета А. Ю. Давыдовым, для которых задача о равновесии плавающих тел имела сугубо практическое значение в связи с теорией устойчивости корабля. Для Архимеда эта задача была чисто теоретической и о ее возможных практических приложениях он, по-видимому, не задумывался. Это замечание относится и к другим результатам, которые Архимед получал в своих математических работах. Неслучаен тот факт, что из всех этих результатов Архимед особенно гордился доказанной им теоремой о том, что объем шара равен 2/3 объема описанного около него цилиндра, вследствие чего на его могиле был поставлен надгробный памятник, изображавший шар, вписанный в цилиндр. Эти открытия представляли, с точки зрения Архимеда, самостоятельную ценность, ни в какой мере не зависевшую от их возможной практической полезности. В этом отношении Архимед целиком находился в плену традиций античной науки, утверждавшей примат теоретического умозрения над любого рода практической деятельностью. То, что он был при этом гениальным инженером, ни в какой мере не меняло его общетеоретических установок.

А между тем предпринятое Архимедом исследование закономерностей, которым подчиняются тела, погруженные в жидкости, было, по-видимому, стимулировано практическими задачами. Утверждая это, мы имеем в виду отнюдь не общеизвестную легенду, о которой сообщается в трактате Витрувия. Метод, который, согласно Витрувию, был применен Архимедом для определения примеси серебра в золотом венце царя Гиерона, крайне неточен и не имеет никакого отношения к закону Архимеда о плавающих телах[310]. В более поздних источниках излагается другой метод, основанный на законе Архимеда и бесспорно более точный[311]. Но какова достоверность этих сообщений, и не представляли ли они позднейшую реконструкцию опыта Архимеда? Мы не знаем этого.

Более важным в данном контексте представляется сообщение историка Полибия[312] (повторенное затем Титом Ливией и Плутархом), по которому во время обороны Сиракуз Архимед подымал и опрокидывал римские корабли с помощью специально сконструированной железной «лапы». Если это сообщение соответствовало действительности, то при расчетах, которые надо было произвести для построения такого механизма, должен был учитываться закон Архимеда.

Что касается прочих инженерных изобретений Архимеда, то к ним, помимо уже упоминавшейся выше «улитки» для полива полей и не считая описанного самим Архимедом в «Псаммите» прибора для определения видимого диаметра Солнца (этот прибор можно считать первой известной нам из литературы научно-измерительной установкой), относятся следующие, упоминаемые древними авторами, устройства: 1. «Небесная сфера», или планетарий, описанный позднее Цицероном. После гибели Архимеда он был вывезен римским полководцем Марцеллом в Рим, где в течение нескольких столетий служил предметом всеобщего восхищения. Последнее упоминание об этом планетарии содержится в эпиграмме римского поэта Клавдиана (ок. 400 г.), из которой мы, в частности, узнаем, что этот планетарий приводился в движение каким-то пневматическим механизмом[313]. Наличие такого механизма существенно отличало планетарий Архимеда от более примитивных «небесных сфер», создававшихся греческими астрономами, начиная с Эвдокса, для моделирования движений небесных тел.

2. Гидравлический орган, упоминаемый Тертуллианом в качестве одного из чудес техники[314]. Надо, однако, отметить, что более древние источники называют в качестве изобретателя такого органа александрийского инженера Ктесибия[315], о котором у нас речь пойдет ниже.

Архимед, по-видимому, лишь усовершенствовал орган, изобретенный Ктесибием.

3. Многочисленные военные орудия, нашедшие применение при обороне Сиракуз. Особый интерес (и, скажем прямо, наибольшие сомнения) среди них вызывает уже упоминавшаяся нами «лапа», захватывавшая и переворачивавшая римские суда. Остальные орудия, по-видимому, отличались от аналогичных устройств, применявшихся в войнах того времени, лишь меткостью попадания, которую подчеркивают все историки, писавшие об осаде Сиракуз римлянами.

Из всего изложенного следует, что в целом технические достижения Архимеда лежали в русле развития античной техники того времени. Принципиальное отличие Архимеда от современных ему инженеров типа Ктесибия и Филона состояло в том, что, будучи величайшим ученым эпохи эллинизма, он сумел осмыслить действие ряда элементарных механизмов, с которыми человек издавна имел дело в своей повседневной практике, и положить тем самым начало развитию теоретической механики — науки, которую древность до этого не знала, но которая стала решающим фактором прогресса материального производства в новое время.





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 456 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2206 - | 2159 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.