При прохождении света через прозрачные анизотропные кристаллические диэлектрики с некубической решеткой наблюдается явление двойного лучепреломления, которое заключается в том, что световой луч разделяется на два: обыкновенный и необыкновенный (рис. 5.28).
Обыкновенный луч удовлетворяет обычному закону преломления и лежит в одной плоскости с падающим лучом и нормалью. Для необыкновенного луча отношение не остается постоянным при изменении угла падения , и луч не лежит в одной плоскости с падающим лучом и нормалью к преломляющей поверхности.
Анизотропными называ-ются кристаллы, у которых физические свойства (такие, например, как скорость света, показатель преломления и т.д.) различны в различных направлениях. Анизотропные кристаллы делятся на
одноосные и двуосные.
У одноосных кристаллов имеется направление, вдоль которого обыкновенный и необыкновенный лучи распростра- няются, не разделяясь и с одинаковой скоростью. Это направление называется оптической осью кристалла.
Любая плоскость, проходящая через оптическую ось, называется главным сечением кристалла. Обычно главное сечение проводят через оптическую ось и световой луч. К одноосным кристаллам относятся исландский шпат, турмалин, кварц. Обыкновенный и необыкновенный лучи в одноосных кристаллах полностью поляризованы во взаимно перпендику- лярных направлениях (рис.5.28). Плоскость колебаний обыкновенного луча перпендикулярно главному сечению. В необыкновенном луче колебания вектора совершаются в плоскости, совпадающей с главным сечением.
В двуосных кристаллах (слюда, гипс и др.) существует два направления, вдоль которых двойного лучепреломления не наблюдается. Под главным сечением в двуосных кристаллах понимают плоскость, проходящую через обе оптические оси. Оба луча, полученные при двулучепреломле- нии, являются необыкновенными. Двойное лучепреломление объясняется анизотропией кристаллов, в частности, зависимость от направления обнаруживает диэлектрическая проницаемость e, а следовательно и показатель преломления n, так как .
В одноосных кристаллах
e в направлении оптической оси и в направлениях, перпендикулярных к ней, имеет различные значения:
e| | и
e^. В других направлениях
e имеет промежуточные значения (рис.29). Таким образом из анизотропии
e вытекает, что электромагнитным волнам с разными направлениями колебаний вектора
соответст- вуют различные значения показа- теля преломления
n. Поэтому скорость световых волн в кристалле будет зависеть от направления колебаний светового вектора
, то есть от угла
a между направлением колебания
и оптической осью кристалла.
Так как в обыкновенном луче колебания светового вектора происходят в направлении, перпендикулярном главному сечению, то при любом направлении распростране- ния обыкновенного луча (1, 2 или 3) (рис.5.30) вектор образует с оптической осью кристалла прямой угол и скорость световой волны будет одна и та же, равная . Изображая скорости обыкновенного луча в виде отрезков, отложенных по разным направлениям, получим сферическую поверхность, которая представляет собой волновую поверх- ность обыкновенных лучей в кристалле, если точечный источник в кристалле помещен в точке O.
В необыкновенном луче колебания совершаются в главном сечении. Поэтому для разных лучей направление колебаний вектора образуют с оптической осью разные углы a (рис.5.31). Для луча 1 , поэтому скорость . Для луча 2 угол и скорость . Для луча 3 скорость имеет промежуточное значение.
Таким образом, волновая поверхность необыкновенных лучей представляет собой эллипсоид вращения. В точках пресечения с оптической осью кристалла волновые поверхности обыкновенных и необыкновенных лучей (сфера и эллипсоид) соприкасаются и в зависимости от того, какая из скоростей, или больше, различают положительные и отрицательные анизотропные кристаллы. Зная вид волновых поверхностей, можно с помощью принципа Гюйгенса определить направление обыкновенного и необыкновенного лучей в кристалле.
Устройство в котором необыкновенный луч можно отделить от обыкновенного, называется призмой Николя. Она состоит из двух прямоугольных призм (рис.5.32) изготовленных из исландского шпата, и склеенных по грани BC канадским бальзамом.
Углы призм подобраны так, чтобы необыкновенный луч проходил сквозь призму практически не преломляясь, а обыкновенный луч на границе канадского бальзама испытывал полное внутренние отражение. Это возможно потому, что
показатель преломления исландского шпата для обыкновен- ного луча больше показателя преломления канадского бальзама.
Рис. 5.32