Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Давление в жидкости и газе




Молекулы газа, совершая беспорядочное, хаотическое движение, не связаны или весьма слабо связаны силами взаимодей­ствия, поэтому они движутся свободно и в результате соударений стремятся раз­лететься во все стороны, заполняя весь предоставленный им объем, т. е. объем газа определяется объемом того сосуда, который газ занимает.

Как и газ, жидкость принимает форму того сосуда, в который она заключена. Но в жидкостях в отличие от газов среднее расстояние между молекулами остается практически постоянным, поэтому жид­кость обладает практически неизменным объемом.

Хотя свойства жидкостей и газов во многом отличаются, в ряде механических явлений их поведение определяется одина­ковыми параметрами и идентичными урав­нениями. Поэтому гидроаэромеханика - раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимо­действие между собой и обтекаемыми ими твердыми телами, - использует единый подход к изучению жидкостей и газов.

В механике с большой степенью точно­сти жидкости и газы рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плот­ность жидкости мало зависит от давления. Плотность же газов от давления зависит существенно. Из опыта известно, что сжи­маемостью жидкости и газа во многих за­дачах можно пренебречь и пользоваться единым понятием несжимаемой жидкости - жидкости, плотность которой всюду одинакова и не изменяется со временем.

Если в покоящуюся жидкость по­местить тонкую пластинку, то части жид­кости, находящиеся по разные стороны от нее, будут действовать на каждый ее эле­мент Δ S с силами Δ , которые независимо от того, как пластинка ориентирована, будут равны по модулю и направлены перпендикулярно площадке Δ S, так как наличие касательных сил привело бы частицы жидкости в движение.

Физическая величина, определяемая нормальной силой F n, действующей со сторо­ны жидкости на единицу площади, назы­вается давлениемр жидкости (p = F n/ S).

Единица давления - Паскаль(Па): 1 Па равен давлению, создаваемому си­лой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1м2.

Внесистемными единицами давления считаются 1 Бар = 105 Па, 1 физическая атмосфера (1 атм =760 мм. рт. ст., где 1 мм. рт. ст. =133 Па).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля: давление в любом месте покоящейся жид­кости одинаково по всем направлениям, причем давление одинаково передается по всему объему, занятому покоящейся жид­костью.

Рассмотрим, как влияет вес жидкости на распределение давления внутри покоя­щейся несжимаемой жидкости. При рав­новесии жидкости давление по горизонта­ли всегда одинаково, иначе не было бы равновесия. Поэтому свободная повер­хность покоящейся жидкости всегда гори­зонтальна вдали от стенок сосуда. Если жидкость несжимаема, то ее плотность не зависит от давления. Тогда при попере­чном сечении S столба жидкости, его вы­соте h и плотности ρ вес P = ρgSh, а дав­ление на нижнее основание

p = P/S = ρgSh/S = ρgh, (6.1)

т. е. давление изменяется линейно с высо­той. Давление ρgh называется гидростати­ческим давлением.

Согласно формуле (6.1), сила давле­ния на нижние слои жидкости будет боль­ше, чем на верхние, поэтому на тело, по­груженное в жидкость, действует выталки­вающая сила, определяемая законом Архимеда:на тело, погруженное в жид­кость (газ), действует со стороны этой жидкости направленная вверх выталкива­ющая сила, равная весу вытесненной те­лом жидкости (газа):

FA = ρgV,

где ρ - плотность жидкости, V - объем погруженного в жидкость тела.

Уравнение неразрывности

Движение жидкостей называется течени­ем, а совокупность частиц движущейся жидкости - потоком. Графически движе­ние жидкостей изображается с помощью линий тока, которые проводятся так, что касательные к ним совпадают по направ­лению с вектором скоро сти жидкости в со­ответствующих точках пространства (рис.6.1). Линии тока проводятся так, чтобы густота их, характеризуемая отно­шением числа линий к площади перпендикулярной им площадки, через которую они проходят, была больше там, где больше скорость течения жидкости, и меньше там, где жидкость течет медленнее. Таким об­разом, по картине линий тока можно су­дить о направлении и модуле скорости в разных точках пространства, т. е. можно определить состояние движения жидкости. Линии тока в жидкости можно «проя­вить», например, подмешав в нее какие-либо заметные взвешенные частицы.

Часть жидкости, ограниченную линия ми тока, называют трубкой тока. Течение жидкости называется установившимся (или стационарным), если форма и распо­ложение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются. Рассмотрим какую-либо трубку тока. Выберем два ее сечения S 1 и S 2, перпенди­кулярные направлению скорости (рис.6.2).

За время Δ t через сечение S проходит объем жидкости Δ t; следовательно, за 1с через S 1 пройдет объем жидкости S 1 υ 1, где υ 1 - скорость течения жидкости в месте сечения S 1. Через сечение S 2 за 1 с пройдет объем жидкости S 2 υ 2, где υ 2 - скорость течения жидкости в месте сечения S 2. Здесь предполагается, что ско­рость жидкости в сечении постоянна. Ес­ли жидкость несжимаема (ρ = const), то через сечение S 2пройдет такой же объем жидкости, как и через сечение S 1, т. е.

S 1 υ 1 = S 2 υ 2 = const. (6.2)

Следовательно, произведение скоро­сти течения несжимаемой жидкости на поперечное сечение трубки тока есть ве­личина постоянная для данной трубки то­ка. Соотношение (6.2) называется урав­нением неразрывности для несжимаемой жидкости.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 659 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2282 - | 2063 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.