Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Математика как часть общечеловеческой культуры. Основные этапы становления современной математики. Аксиоматический подход




Мы живем в век математики. Математическое образование важно с различных точек зрения: логической, познавательной, прикладной, исторической, философской.

Cлово «математика» произошло от греческого «ma¢qhma» (матэма) – наука, знание. Кант писал: «Учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена к ней математика».

Математика является не только универсальным языком на­уки, но также и частью современной культуры. «Тот, кто не знает математики, – говорил в XIII веке известный английский философ Роджер Бэкон, – не может узнать никакой другой науки и даже не может обнаружить своего невежества». «Математика ум в порядок приводит», авторитетно заявлял М.В. Ломоносов.

Известны два подхода к определению предмета математики. Первая точка зрения утверждает, что математика – это наука о количественных отношениях и пространственных формах окружающего мира. Примером для такой точки зрения может служить геометрия Евклида с ее содержательной аксиоматикой.

Другая точка зрения отражает методологический подход Бурбаки (коллектив французских ученых), которые определяют математику как скопление математических структур, не имеющих к действительности никакого отношения, так как одни и те же аксиомы могут описывать отношения различных по своему конкретному содержанию объектов. Они выделяют три основных типа структур.

Алгебраические структуры (группы, кольца, поля). Элементами могут выступать как математические объекты, так и нематематические.

Структуры порядка. На рассматриваемом множестве задается отношение порядка (сравнение).

Топологические структуры. Каждому элементу множества относят семейства подмножеств, называемых окрестностями этого элемента.

Кроме этих порождающих структур рассматриваются и более сложные.

Когда из аксиом структуры выводят логические следствия, отказавшись от всяких гипотез относительно «природы» рассматриваемых элементов, то говорят о построении аксиоматической теории структуры.

Два приведенных подхода дополняют друг друга, а не находятся в антагонизме, в чем можно убедится, анализируя историю развития математики.

Академик Колмогоров выделяет 4 периода истории.

1) Зарождение математики (до VI в. до н.э.). Математика не является самостоятельной отраслью знания. В Египте, Вавилоне, Индии и Китае появляются начатки арифметики, геометрии, алгебры и тригонометрии.

2) Элементарная математика (VI в. до н.э. – XVII в.). В Древней Греции возникает математика как самостоятельная наука. Математика развивается в арабских странах. Дедуктивное изложение элементарной геометрии, возникновение теории чисел, понятия действительного числа, создание алгебры как буквенного исчисления. Основное понятие – величина.

3) Математика переменных величин (XVII – XIX вв.). Появление математического и функционального анализа, дифференциальных и интегральных уравнений, проективной и аналитической геометрии. Основное понятие – функция.

4) Современная математика (с XIX в.). Взрывное развитие математики и проникновение ее во все области науки и практической деятельности. Планомерное изучение математикой самой себя: количественных отношений и пространственных форм. Обоснование математики: возникновение теории множеств и математической логики. Развитие теории вероятностей и вычислительной математики.

Зарождение математики

Восточная математика возникла как прикладная наука, имевшая целью облегчить календарные расчеты, распределение урожая, организацию общественных работ и сбор налогов. В ней не было попыток дать то, что называется доказательством; имеются только предписания, алгоритмы: «делай то-то и так-то».

Самой развитой была вавилонская математика. Именно ей человечество обязано как шестидесятеричной системой счисления, используемой в настоящее время при измерении времени и углов (градусы измеряются от 0° до 360°, в минуте 60 секунд, в часе 60 минут), так и атрибутом современной десятичной системы счисления – позиционностью, благодаря которой в Вавилоне был изобретен нуль как принцип записи чисел. Значение позиционности для человечества сродни значению алфавита.

Первое упоминание о комбинаторных вопросах встречается в китайских рукописях XII–XIII вв. до н.э. «Же-ким» («Книга перемен (перестановок)»). Там же писалось, что все в мире является сочетанием двух начал: мужского ян и женского инь.

 





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 3105 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2333 - | 2094 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.