Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Предельные вероятности состояния




Пусть система S с дискретным состоянием Si протекающие значение от 1 до n в котором протекает Марковский случайны процесс с дискретным состоянием и непрерывным. временем.

Записав систему дифференциальных уравнений Колмогорова для вероятности состояния и, проинтегрировав её при заданных начальных условиях получим, N функции.

P1(t),P2(t),…Pn(t),

Для которых выписывается условие

n

∑ Рi(t) = 1

i=1

Поставим вопрос: что будет происходить с системой S при t→∞, будет ли функция Pi(t) стремится к каким-то пределам. эти приделы если они существуют, называются вероятностями состояния Можно доказать следующие положение.

если число состояний системы S конечный из каждого состояния можно перейти за то или другое число шагов в любое другое, то представление вероятности состояний на существование и не зависит от начального состояния системы. Таким образом, при t→∞, в системе S устанавливается предельно стационарный режим. Он состоит в том, что система случайным образом меняет свои состояния, но вероятность каждого из них уже не зависит от времени. Каждое состояние устанавливается с некоторым постоянной вероятностью. Эта вероятность представляет собой относительное время прибивания системы в данном состоянии. Например,если у системы S3 возможных состояния S1,S2,S3. их представления вероятности 0,2; 0,4; 0,4. это означает что после перехода к установившемуся режиму система S в среднем 0,2 времени будет находится состоянии S1и по 0,4 всего времени в состоянии S2,S3. Для вычислительных пределах вероятности состояний нужно в уравнениях Колмогорова все производные прировнять к нулю. При этом система дифференциальных уравнений превращается в систему линейно алгебраического выражения, совместно с условиями

n

∑ = Pi (t) = 1

i=1

Эти уравнения дают вычислить все представленные вероятности состояний Pi(i = 1..n)

Пример:

Определить представление вероятности состояний для системы при следующих интенсивностях перехода.

λ12=2

λ21=1

λ13=3

λ23=0,5

λ32=1,5





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 802 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2176 - | 2134 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.