Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Третий закон Ньютона и закон сохранения импульса




Механическое действие тел друг на друга всегда является их взаимодействием. Если тело 1 действует на тело 2, то при этом обязательно тело 2 действует на тело 1. Так, например, на ведущие колеса электровоза (рис.2.3) действуют со стороны рельсов силы трения покоя, направленные в сторону движения электровоза. Сумма этих сил и есть сила тяги электровоза. В свою очередь, ведущие колеса действуют на рельсы силами трения покоя, направленными в противоположную сторону.

Количественное описание механического взаимодействия было дано Ньютоном в его третьем законе динамики. Для материальных точек этот закон формулируется так:

Две материальные точки действуют друг на друга с силами, равными по величине и направленными противоположно по прямой, соединяющей эти точки (рис.2.4): . Третий закон справедлив не всегда. Он выполняется строго в случае контактных взаимодействий, а также при взаимодействии находящихся на некотором расстоянии друг от друга покоящихся тел.

Перейдем теперь от динамики отдельной материальной точки к динамике механической системы, состоящей из материальных точек. Для -той материальной точки системы, согласно второму закону Ньютона (2.5), имеем:

. (2.6)

Здесь и - масса и скорость -той материальной точки, - сумма всех действующих на нее сил.

Силы, действующие на механическую систему, делятся на внешние и внутренние. Внешние силы действуют на точки механической системы со стороны других, внешних тел. Внутренние силы действуют между точками самой системы. Тогда силу в выражении (2.6) можно представить в виде суммы внешних и внутренних сил:

, (2.7)

где – результирующая всех внешних сил, действующих на -тую точку системы; -внутренняя сила, действующая на эту точку со стороны -й. Подставим выражение (2.7) в (2.6):

, (2.8)

 

просуммировав левые и правые части уравнений (2.8), записанных для всех материальных точек системы, получаем

. (2.9)

По третьему закону Ньютона силы взаимодействия -той и -й точек системы равны по модулю и противоположны по направлению .

Поэтому сумма всех внутренних сил в уравнении (2.9) равна нулю:

. (2.10)

Векторная сумма всех внешних сил, действующих на систему,

называется главным вектором внешних сил

. (2.11)

Поменяв в выражении (2.9) местами операции суммирования и дифференцирования и учитывая результаты (2.10) и (2.11), а также определение импульса механической системы (2.3), получаем . Это основное уравнение динамики поступательного движения твердого тела: скорость изменения импульса механической системы равна векторной сумме приложенных к ней сил.

Если система замкнутая, , то и - в замкнутой механической системе полный импульс сохраняется. Это закон сохранения импульса.

 





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 2096 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2330 - | 2262 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.