Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Условное разбиение пространственного тела




На рисунке 13 (слева) изображены следы плоскостей сечения тетраэдра, внутри которого отсечена трёхмерная фигура - усеченный тетраэдр (тело Архимеда).

 

 

Рис. 13.

На рисунке 13 (справа) плоскости сечения проходят через серединные точки рёбер тетраэдра. Каждая из них параллельна одной из четырёх граней многогранника. В результате отсекается правильный октаэдр (тело Платона). Применяя к октаэдру аналогичный способ сечения, получится полуправильная фигура - кубооктаэдр (тело Архимеда). Рассматривая рисунок справа, можно представить звёздчатую фигуру октаэдра (Stella octangula Кеплера), как соединение двух тетраэдров, ограничив тетраэдр второй аналогичной фигурой (тетраэдром), получится звёздчатая фигура - восьмиугольная звезда. Соединение двух тетраэдров (восьмиугольной звезды) является результатом продолжения октаэдра. На рисунке (справа) прослеживается обратный порядок: продолженные четыре из восьми граней октаэдра образуют четыре треугольные грани тетраэдра.

На рисунках 14 и 15 изображены ранее рассматриваемые модели усеченного куба с видом на «грань» и «ребро».

 

Рис. 14. Рис. 15.

На изображениях светлые линии, выступающие за внешние контуры многогранника, принадлежат продолжениям диагональных плоскостей. Красным цветом изображены следы пересечения секущих плоскостей. Пары плоскостей взаимно пересекаются и ограничивают внутри усеченного куба ромбокубооктаэдр (тело Архимеда). На внешних гранях усеченного куба проецируются следы плоскостей сечения и точки (концы) продолженных рёбер ромбокубооктаэдра.

Проявив внимание к сети нитей, можно перейти к конструированию макетов многогранных фигур, предварительно составив необходимые чертежи продолжений и, следовательно, развёрток. Общая «картина» геометрической структуры рёберно-сетчатой модели усеченного куба, позволяет определять необходимые параметры для организации последующей работы.

В случае рассечения многогранника экваториальной плоскостью, например, икосаэдра или додекаэдра, получают две равные их половины. Предположим, что в результате рассечения икосаэдра диагональной плоскостью, одна из усеченных частей - правильная пирамида. Боковые грани её - суть равносторонние треугольники, составленные пятью гранями. В основании пирамиды лежит правильный пятиугольник. Подобных пирамид всего двенадцать, что соответствует как числу вершин икосаэдра, так и числу граней двойственного ему додекаэдра. Отметим, что эти основания пирамид лежат в диагональных плоскостях икосаэдра соответственно. Рассекая икосаэдр двенадцатью диагональными плоскостями, получают «в остатке» правильный многогранник - додекаэдр. Нетрудно представить, что все грани додекаэдра, полученного в результате рассечения икосаэдра, лежат в его диагональных плоскостях. Предположим, что продолженные рёбра двойственного додекаэдра будут сбегаться в вершинах рёберной модели икосаэдра. Они образуют пучки линий, каждый из которых состоит из пяти рёбер. К пятиугольным граням двойственного додекаэдра примыкают основания пирамид. Их боковые грани - равнобедренные треугольники. Число пирамид равно двенадцати. Так выглядит известный многогранник - малый звёздчатый додекаэдр. Перейдём от умозрительных представлений к наглядным моделям.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 897 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2346 - | 2094 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.