Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Коэффициент сопротивления системы. Характеристика системы




Полные потери напора в каком-либо трубопроводе слагаются из потерь напора на трение и потерь напора, вызванных местными сопротивлениями. Подобное геометрическое суммирование потерь напора по всему пути движения жидкости в трубопроводе носит название принципа наложения потерь. Если в трубопроводе, состоящем из нескольких участков последовательно соединённых труб, имеются различные местные препятствия, то суммарная потеря напора равна

. (3.106)

 

Рассмотрим несложную систему трубопровода, представленную на рис.3.18.

Трубопровод состоит из 2х участков труб, все размеры которых и гидравлические характеристики известны. В данной системе возникнут потери:

1. на трение на участках I и II;

2. на входе в трубу (а);

3. в повороте (б);

Рис.3.18 4. во внезапном сужении (в);

5. на выходе из трубы (г).

Тогда полные потери напора составятся из суммы:

. (3.107)

Сгруппировав слагаемые с общими множителями, получим

. (3.108)

По условию неразрывности потока имеем

. (3.109)

Подставим (3.109) в (3.108)

. (3.110)

Выражение, стоящее в квадратных скобках, представляет собой коэффициент сопротивлений данной системы трубопроводов ξсист. В результате, выражение суммарных потерь напора приобретает краткую запись в виде формулы Вейсбаха

. (3.111)

Таким образом, коэффициентом сопротивления системы называется сумма всех коэффициентов сопротивлений, приведённых к единому скоростному напору.

Запишем уравнение Бернулли для жидкости, перетекающей из левого бака в правый. В качестве характерных сечений возьмем свободные поверхности 1-1 и 2-2, за плоскость сравнения примем плоскость 2-2. Скоростными напорами в сечениях пренебрегаем.

. (3.112)

Давления на свободной поверхности одинаковы и равны атмосферному, поэтому

. (3.113)

Координата z1 – это исходный геометрический напор жидкости Н, находящейся в левом баке. Координата z2 характеризует запас удельной энергии положения после перемещения жидкости через сопротивления из левого бака в правый. Назовём эту величину свободным напором после сопротивления , следовательно

, (3.114)

то есть располагаемый напор истрачен на преодоление сопротивлений и создание свободного напора.

Выразим скорость V2 через расход и подставим в уравнение (3.111)

. (3.115)

Коэффициент Ксист связывает суммарные гидравлические потери в системе с протекающим расходом. Подставим (3.114) в (3.113) и окончательно получим

. (3.116)

Это уравнение называется характеристикой системы и показывает, каким напором необходимо располагать, чтобы обеспечить в системе заданный расход Q и свободный напор на выходе hсв .

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 955 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.