Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Полная система уравнений Максвелла для электромаг-нитного поля в дифференциальной форме. Материальные уравне-ния. Граничные условия




 

Используя систему уравнений Максвелла для электромагнитного поля в интегральной форме (5.1.3, 5.1.12–5.1.14), получим полную систему уравнений Максвелла для электромагнитного поля в диффе-ренциальной форме.


 


Рассмотрим первое уравнение Максвелла (5.1.3). К левой части уравнения применим теорему Стокса:

Edl =(rot E) ndS, (5.2.1)
L S  
     

 

где S – произвольная поверхность, ограниченная контуром L.

 

Если контур L не деформируется и не перемещается в простран-стве, то правую часть уравнения (5.1.3) можно представить в виде:

 

d Ф m   d         dBn      
=   Bn dS = dS. (5.2.2)  
       
dt dt S   S dt    

Подставив выражения (5.2.1–5.2.2) в уравнение (5.1.3), получим:

 

      d Ф m     dB    
Edl = −   ⇒ ∫ (rot E) n dS = − n dS. (5.2.3)  
dt      
L       S S dt    

Так как поверхность S в выражении (5.2.3) является произволь-ной, то равенство интегралов будет выполняться, если выполняется условие:

  dB (5.2.4)  
rot E = − dt.  
   

Уравнение (5.2.4) является 1-м уравнением Максвелла в диффе-ренциальной форме.

 

Рассмотрим второе уравнение Максвелла (5.1.12). К левой части

уравнения применим теорему Стокса:  
Hdl =(rot H) ndS. (5.2.5)
L S  
     

 

Суммарный ток проводимости, пронизывающий произвольную поверхность S, ограниченную контуром L, запишем в виде:

I = jn dS. (5.2.6)
S  

 

Если контур L не деформируется и не перемещается в простран-стве, то поток вектора электрического смещения через поверхность S, ограниченную контуром L, можно записать в виде:

d Ф D = d   D dS =   dD n dS . (5.2.7)  
       
dt dt S n S dt    
     

Подставив выражения (5.2.5–5.2.7) в уравнение (5.1.12), получим:


 


      d Ф D       dDn      
Hdl = I + ⇒ ∫ (rot H) n dS = jn dS + dS. (5.2.8)  
dt    
L     L S S dt    

Так как поверхность S в выражении (5.2.8) является произволь-ной, то равенство интегралов будет выполняться, если выполняется условие:

    + dD . (5.2.9)  
rot H = j dt  
           

 

Уравнение (5.2.9) является 2-м уравнением Максвелла в диффе-ренциальной форме.

 

3-м и 4-м уравнениями Максвелла в дифференциальной форме яв-

 

ляются теоремы Гаусса для электрического (5.2.10) и магнитного (5.2.11) поля в дифференциальной форме:

 

div D =ρ. (5.2.10)
div B = 0. (5.2.11)

 

Уравнения (5.2.3, 5.2.9–5.2.11) составляют систему четырех урав-нений Максвелла в дифференциальной форме.

Четыре фундаментальных уравнения Максвелла не образуют пол-ную систему уравнений электромагнитного поля в веществе. В самом деле, если два векторных уравнения системы (5.2.3, 5.2.9) записать в ко-ординатной форме, то с учетом двух оставшихся уравнений получится восемь скалярных уравнений. Они связывают между собой проекции пяти векторов (Е, D, Н, В, j) и ρ, т. е. восемь уравнений содержат шест-надцать неизвестных величин. Это связано с тем, что уравнения Мак-свелла не содержат никакой информации о свойствах среды, в которой существует электромагнитное поле. Электромагнитные свойства веще-ства (материи) определяются уравнениями, которые в случае изотроп-ной, однородной, проводящей, неферромагнитной и не сегнетоэлектри-

ческой среды (ε = const, μ = const, σ = const) имеют вид:  
         
D =εε0 E, B =μμ0 H, jE. (5.2.12)
         

Уравнения (5.2.12) называют материальными уравнениями среды. Уравнения (5.2.3, 5.2.9–5.2.12) образуют полную систему уравне-ний электромагнитного поля в среде, решение которой при заданных граничных условиях позволяет определить векторы Е, D, Н, В, j и ска-ляр ρ в каждой точке среды с заданными ее характеристиками ε, μ, σ.

Уравнения справедливы при следующих условиях: 1) материальные тела в поле неподвижны;


 


2) материальные константы ε, μ, σ могут зависеть от координат, но не должны зависеть от времени и векторов поля;

3) в поле отсутствуют постоянные магниты и ферромагнитные тела. Из уравнений Максвелла следует:

• источниками электрического поля являются либо электриче-

 

ские заряды, либо изменяющиеся во времени магнитные поля (1-е и 3-е уравнение);

 

• магнитное поле может возбуждаться либо электрическими то-ками, либо переменным электрическим полем (2-е уравнение);

 

• переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле − с магнит-ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом и образуют единое электромагнитное поле.


Тема 6. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

 

Лекция № 8

 

6.1. Электромагнитные волны. Волновое уравнение.

 

6.2. Основные свойства электромагнитной волны. Уравнение элек-тромагнитной волны. Фазовая скорость. Монохроматические волны.

 

6.3. Энергия электромагнитной волны. Вектор Умова−Пойнтинга.

 

6.4. Шкала электромагнитных волн.

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 489 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.