Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Типы магнетиков. Элементарная теория диа- и парамаг-нетизма




 

Выделяют такие типы магнетиков, как диа- и парамагнетики.

Диамагнетики

 

У диамагнитных веществ суммарный магнитный момент атома равен нулю, так как имеющиеся в атоме орбитальные, спиновые и ядерные моменты взаимно компенсируются (рис. 4.3.1, а). Однако электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движение, которое эквивалентно круго-вому току. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, его собственное магнитное поле, а следовательно и магнитный момент направлены противоположно внешнему полю (рис. 4.3.1, б). Индуцированные магнитные моменты атомов (молекул) складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле. Этот эффект получил название диамагнитного эффекта, а вещества, намагничи-вающиеся во внешнем магнитном поле против направления поля, на-звали диамагнетиками. Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам.

 

B

 

а б

Рис. 4.3.1

 

Рассмотрим намагничивание диамагнетика (рис. 4.3.2). В отсутст-вие магнитного поля (В = 0) электрон движется в электрическом поле ядра атома по вполне определенной стационарной орбите. Электрон на круговой орбите удерживается силой кулоновского притяжения к ядру. При этом электрон обладает орбитальным механическим моментом и


 


 
ω L
Рис. 4.3.2
 
B
pm
I

магнитным моментом, которые связаны между собой гиромагнитным отношением g opб. Поскольку В = 0, оба эти вектора L 0 и pm сохраняют

 

свое направление в пространстве (если не принимать во внимание теп-ловое движение атомов). Во внешнем магнитном поле индукцией В на электрон в атоме будет действовать вращающий момент

 

M = p m × B. (4.3.1)  
       

 

е

L 0

 

С учетом выражения (4.1.9) он будет равен:              
            M = − g   L × B .           (4.3.2)  
                орб                    
Согласно закону об изменении момента импульса получаем:  
  dL       dL             dL =         (4.3.3)  
    = M 0   = −   ×           × L 0  
dt dt     dt    
        g орб L 0   B   g орб B   .    
                                           

Уравнения (4.3.3) по виду совпадают с кинематическим выраже-нием для скорости υ движения точки твердого тела, вращающегося вокруг неподвижной оси:

 

  dr       (4.3.4)
υ= dt = ω× r .  

Сопоставляя уравнение (4.3.4) с соотношением (4.3.3), можно придти к выводу, что вектор L 0 орбитального момента импульса и связанный с ним вектор pm магнитного момента совершают в магнит-

ном поле прецессионное движение вокруг оси (рис. 4.3.2), параллель-

 

ной вектору B с угловой скоростью

 

ω L = g орб B = eB . (4.3.5)  
   
  2 me    

 


Угловая скорость прецессии ω L совпадает по направлению с век-тором индукции В (рис. 4.3.2). Прецессионное движение электронных орбит открыл в 1895 г. ирландский физик Джозеф Лармор. Он сфор-мулировал теорему (теорема Лармора): единственным результатом действия магнитного поля на движение электрона в атоме является прецессия электронных орбит вокруг оси, параллельной магнитному полю и проходящей через ядро атома, причем модуль угловой скоро-

сти ω L = eB. А прецессионное движение электронных орбит носит

2 me

название прецессия Лармора.

B

 

ω L

 

SI прец

 

pm

 

Рис. 4.3.3

 

Прецессия электронных орбит приводит к появлению дополни-тельного орбитального тока (рис. 4.3.3):

I прец = e = e ω L = e 2 B . (4.3.6)  
T     m  
           
      L         e      
Этот ток создает индуцированный (наведенный) орбитальный  
магнитный момент:                      

 

  p = I прец S = e 2 B S , (4.3.7)  
  m  
    m              
                e          
где S площадь проекции орбиты на плоскость перпендикулярную  
вектору B.          
Так как вектор pm направлен против внешнего поля, то можно  
записать   e 2 S        
     
  p m = −   B. (4.3.8)  
  me  
         
                                     

 


Для атома, имеющего Z электронов, общий наведенный орби-тальный магнитный момент равен:

  Ze 2 B      
pm = −   S B. (4.3.9)  
me  
       

Этот дополнительный магнитный момент приводит к возникно-вению индуцированной намагниченности, направленной против внешнего поля В. Он играет определяющую роль при объяснении яв-ления намагничивания диамагнетиков.

 

Найдем намагниченность диамагнетика. Вектор намагниченности диамагнетика будет равен:

 

      N         Ze 2 S   Ze 2 S    
J = lim   pmi = −   NB = − n       B = − n   μ0 H. (4.3.10)  
  V m m  
  V →0 V i =1            
                    e   e    
  Сравнивая формулу (4.3.10) с (4.2.2) получим:      
          χ = − n Ze 2 S .     (4.3.11)  
                     
              m        
                  e        

Оценка по формуле (4.3.11) и экспериментальные данные показы-вают, что значение магнитной восприимчивости для диамагнетиков практически составляет порядка χ = –10–6.

 

Восприимчивость диамагнетиков почти не зависит от температу-ры Т и напряженности Н магнитного поля. Поэтому процесс намагни-чивания диамагнетиков характеризуется линейной зависимостью J

 

от H (рис. 4.3.4).

J

 

 

O

 

H

 

 

Рис. 4.3.4

 

Парамагнетики

 

Наряду с диамагнитными веществами существуют и парамагнит-ные – вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.

У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и


 


атомы (молекулы) парамагнетиков всегда обладают магнитным момен-том. Однако вследствие теплового движения молекул их магнитные мо-менты ориентированы беспорядочно (рис. 4.3.5, а), поэтому парамаг-нитные вещества магнитными свойствами не обладают. При внесении парамагнетика во внешнее магнитное поле устанавливается преимуще-ственная ориентация магнитных моментов атомов по полю (полной ори-ентации препятствует тепловое движение атомов) (рис. 4.3.5, б). Таким образом, парамагнетик намагничивается, создавая собственное магнит-ное поле, совпадающее по направлению с внешним полем и усили-вающее его. Этот эффект называется парамагнитным. При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагни-чивается.

J

 

B


 

 

а


 

 

б O

 

H


 

Рис. 4.3.5 Рис. 4.3.6

 

Процесс намагничивания парамагнетиков во многом аналогичен тому, как поляризуется диэлектрик, состоящий из полярных молекул. Кривая намагничивания парамагнетиков (рис. 4.3.6) указывает на яв-ление насыщения, которое связано с ориентационным упорядочением магнитных моментов молекул вещества. Классическая статистическая теория парамагнетизма была построена французским физиком Полем Ланжевеном в 1905 г. Согласно этой теории в не очень сильных одно-родных постоянных магнитных полях, когда потенциальная энергия «элементарного тока» намного меньше характерной тепловой энер-гии, восприимчивость χ парамагнетика оказывается обратно пропор-циональна температуре:

  μ np 2    
χ=     m . (4.3.12)  
3 kT    
         

 

Значения проницаемости χ парамагнетика лежит в пределах 10–5–10–3. Подводя итог, отметим, что атомы всех веществ являются носите-лями диамагнитных свойств. Если магнитный момент атомов велик,


 


то парамагнитные свойства преобладают над диамагнитными и веще-ство является парамагнетиком. Если магнитный момент атомов мал, то преобладают диамагнитные свойства и вещество является диамаг-нетиком.

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 678 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2292 - | 2064 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.