Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Траектория, длина пути, вектор перемещения




Модели в механике. Системы отсчёта.

 

Механика – часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение. Механическое движение – это изменение с течением времени взаимного расположения тел или их частей.

Механика, для описания движения использует разные физические модели. Простейшей моделью является материальная точка – тело, обладающее массой, размерами которого в данной задаче можно пренебречь.

Под воздействием тел друг на друга тела могут деформироваться, т.е. изменять свою форму и размеры. Поэтому в механике вводится ещё одна модель – абсолютно твёрдое тело. Абсолютно твёрдое тело – тело, которое не подвержено деформации.

Любое движение твёрдого тела можно представить как комбинацию поступательного и вращательного движений. Поступательное движение – это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению. Вращательное движение — это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Положение материальной точки определяется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета. С ним связывается система отсчета — совокупность системы координат и часов, связанных с телом отсчета.

В декартовой системе координат, используемой наиболее часто, положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами х, y и z или радиусом-вектором r, проведенным из начала системы координат в данную точку (рис. 1).

 
 

 


При движении материальной точки ее координаты с течением времени изменяются. В общем случае ее движение определяется скалярными уравнениями:

; ; ; (1.1.)

эквивалентными векторному уравнению:

. (1.2.)

Уравнения (1.1) и соответственно (1.2) называются кинематическими уравнениями движения материальной точки.

Число независимых координат, полностью определяющих положение точки в пространстве, называется числом степеней свободы. Если материальная точка свободно движется в пространстве, то, как уже было сказано, она обладает тремя поступательными степенями свободы (координаты х, y и z); если она движется по некоторой поверхности, то двумя степенями свободы, если вдоль некоторой линии, то одной степенью свободы.

Исключая t в уравнениях (1.1.) и (1.2.), получим уравнение траектории движения материальной точки. Траектории движения материальной точки — линия, описываемая этой точкой в пространстве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Рассмотрим движение материальной точки вдоль произвольной траектории (рис. 1.2). Отсчет времени начнем с момента, когда точка находилась в положении А. Длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени, называется длиной пути DS и является скалярной функцией времени: . Вектор , проведенный из начального положения движущейся точки в положение её в данный момент времени, называется перемещением.

 
 

Скорость

 

Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор (рис. 2.1). В течение малого промежутка времени Dt точка пройдёт путь DS и получит элементарное перемещение .

 
 


Вектором средней скорости называется отношение приращения радиуса-вектора точки к промежутку времени Dt.

(2.1)

Направление вектора средней скорости совпадает с направлением . При неограниченном уменьшении Dt средняя скорость стремится к предельному значению, которое называется мгновенной скоростью :

или .

Таким образом, модуль мгновенной скорости равен первой производной пут по времени:

(2.2.)

Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке. Различие между средней и мгновенной скоростями показано на рис. 2.2.

 
 

 


Если выражение ds=u×dt (см. формулу (2.2)) проинтегрировать по времени в пределах от t до t + D t, то найдем длину пути, пройденного точкой за время D t:

(2.3)

В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t1 до t2, дается интегралом

.






Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 711 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.