Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


СМО с ограничением времени ожидания в очереди




В этом разделе рассмотрим СМО типа М/М/n/m<, но, в отличие от предыдущих, наложим ограничение на время ожидания в очереди.
Это ограничение носит принципиальный характер, т.к. при вычислении вероятностей состояний СМО необходимо знание не только текущего состояния (числа требований в системе), но и того, как давно пришли требования, ожидающие обслуживания. Таким образом, процесс К(t) перестает быть марковским.

Время ожидания в очереди может быть ограничено как детерминированной, так и случайной величиной. В обеих случаях процесс К(t), как уже было сказано, характеризуется наличием последействия. Однако, способы формирования на его основе марковской модели СМО существенно различаются.

 

7.3.1. Время ожидания ограничено случайной величиной τ

В этом случае все зависит от закона распределения ограничения , т.к. именно ограничение вносит в систему последействие. Поэтому вернуть процессу К(t) марковость крайне просто. Достаточно принять для описания случайной величины экспоненциальное распределение. Однако при этом нельзя забывать, что такая операция возможна лишь в том случае, когда реальное распределение или действительно экспоненциальное, или близко к нему. Если это не так, то сформированная математическая модель будет неадекватна реальной СМО.

При экспоненциально распределенном ограничении на время ожидания в очереди, процесс изменения числа требований в СМО по-прежнему будет процессом размножения и гибели с той лишь разницей, что интенсивность гибели увеличится за счет, покидающих очередь требований, у которых время ожидания превысило допустимую величину.

Примем, что распределение времени ожидания имеет вид:

F(t) = 1 - e - функция распределения,

f(t) = e - плотность распределения,

где - интенсивность выхода из очереди за счет превышения допустимого времени ожидания.

Тогда параметры процесса К(t) будут равны:

= const

= k , при к<n,

= n + (k - n) , при к>n.

Читателю предлагается самостоятельно, руководствуясь материалом раздела 7.2.1, написать модель рассматриваемой СМО, и формулы для вычисления основных характеристик СМО в стационарном режиме.

 

7.3.2. Время ожидания ограничено неслучайной величиной τ

В этом случае для описания СМО с помощью марковской модели целесообразно использовать второй из приведенных в 7.1. способов, а именно, расширение понятия состояния. Для того, чтобы прогнозировать распределения состояний в будущем, необходимо знать как давно пришли в систему требования, которые в настоящее время находятся в очереди. Это можно сделать, включив в число обобщенных координат, описывающих состояние СМО, давность прихода каждого ожидающего требования, или, что то же самое, время, которое осталось у него до окончания срока ожидания. В рамках процесса К(t), которым мы пользовались во всех предыдущих задачах, это сделать нельзя, и в рассматриваемом случае модель функционирования СМО строится на основании векторного случайного процесса X , характеризующего состояние системы через состояния каждого из n ее каналов:

X = { X (t), X (t),…. X (t)} = { X (t)}

X (t) – это время, которое осталось до освобождения j-ого канала. Таким образом, для каждого момента времени t, мы можем прогнозировать будущие состояния каналов: j-ый канал освободится через хj(t), если за это время не поступят требования из внешнего потока. А так как входящий поток простейший, это значит, что в процессе X последействие отсутствует, т.е. процесс марковский. Найдем распределение этого процесса.

( 7.3 )

- это функция и плотность n-мерного распределения вектора X (t) в случае, когда все каналы заняты. Занятые (и только они) каналы персонифицированы, т.е. перенумерованы.

- то же, что и выше, но в случае, когда занято лишь «к» каналов, а остальные свободны.

( 7.4 )

В дальнейшем, для простоты, будем трактовать плотность f (t; x …x ) как вероятность того, в СМО занято к каналов, которым присвоены номера от 1 до к., опуская при этом формальное умножение на . Знание этих распределений позволит вычислять вероятности состояний рассматриваемой системы.

Для вывода необходимых уравнений используем марковское свойство процесса X(t), а именно: будем выражать вероятность состояния процесса в момент t+ t (будущее) через его состояние в момент t (настоящее). Предварительно заметим, что - вероятность того, что в системе нет требований.

Для нулевого состояния СМО (в системе нет требований) можем, как и прежде, записать

( 7.5 )

Второе слагаемое означает, что в момент t в одном из каналов системы было требование, обслуживание которого заканчивалось на интервале t, и этим каналом мог быть любой из n.

Преобразуя и переходя к пределу при t 0, получим:

( 7.6 )

Рассмотрим случай, когда 0<k<n. Напишем вероятность будущего состояния системы:

( 7.6 )

При составлении этого уравнения учитывалось следующее:

· за время t занятости всех каналов уменьшаются на , и если за это время не подойдет ни одного требования входящего потока, то к моменту t система окажется в нужном состоянии (первое слагаемое правой части);

· второе слагаемое правой части: в момент t был занят к-1 канал, а канал с номером i (из числа персонифицированных) был пустым, и что бы СМО пришла в нужное состояние необходимо: чтобы пришло требование, чтобы время его обслуживания было равно x , и чтобы из (n-к) свободных каналов оно выбрало именно i-ый, причем этим каналом может быть любой из каналов с номерами от 1 до к.

· последнее слагаемое означает, что в момент t был занят (к + 1) канал, но в одном из них (а именно в (к+1)–ом) на интервале обслуживание заканчивалось. Причем таким каналом может быть любой из (n – к).

Теперь рассмотрим случай, когда :

( 7.7 )

Поясним, как и выше, содержание правой части:

· Первое слагаемое отличается от случая к<n тем, что здесь учитывается то обстоятельство, что, когда все каналы заняты, требования входящего потока влияют на процесс X (t), только, если время занятости наименее загруженного канала меньше, чем допустимое время ожидания в очереди. В противном случае приходящие требования получают отказ и никак не влияют на процесс X (t). Учет этого достигается за счет введения сомножителя с сигнатурой. (напомним, что sign x =1, если x>0, и sign x= - 1, если x<0).

· Второе слагаемое в содержательном плане ничем не отличается от случая к<n, за исключением того, что не надо учитывать вероятность попадания пришедшего требования в нужный канал, т.к.он единственный свободный.

· Третье слагаемое правой части отвечает ситуации, когда все каналы заняты, как это нужно, но один из них «недозанят», например, X (t) = Z < x ; для того, чтобы в момент t+ СМО оказалась в требуемом состоянии надо, чтобы на интервале пришло требование со временем обслуживания (x - z), и стало бы в очередь к i-му каналу, а для этого его занятость z должна быть меньше занятости любого другого канала (z < min x ) т.к. когда все каналы заняты, требование автоматически становится в очередь к тому который раньше освободится; при этом недозанятым может быть любой из n каналов.

Вспоминая определение смешанной частной производной:

, ( 7.8 )

 

производя группировку членов уравнений, как это делалось выше, и переходя к пределу при , окончательно получим:

для k >n:

( 7.9 )

для :

( 7.10 )

Эти уравнения относятся к стационарному режиму, что получило свое выражение в том, что производные плотностей распределения по t приняты равными нулю, а сами плотности записаны в финальной форме, как функции не зависящие от времени. Кроме того, для простоты последующих выкладок, приняты следующие обозначения: f = f и f = f .

Решение этой системы, т.е. отыскание функций f и f , произведем следующим образом. Вначале, исходя из общих соображений содержательного характера, найдем вид этих функций, после чего подставим их в систему уравнений с целью установить, удовлетворяют они им или нет. Если ответ будет положительным, то решение системы уравнений найдено.

Сперва рассмотрим случай 0 . Как говорилось выше, функция f имеет смысл вероятности того, что в СМО занято «к» персонофицированных (перенумерованных) каналов, причем первый освободится через x единиц времени, второй через x , …, к-ый через x . Каналы функционируют независимо, и время обслуживания в каждом распределено экспоненциально. Тогда вероятность рассматриваемого события равна:

( 7.11 )

где

- вероятность того, что занято k перенумерованных каналов

P - вероятность того, что в СМО занято k каналов

( 7.12 )

Т.к. мы рассматриваем случай (очереди нет), то можем предположить, что ограничение времени ожидания в очереди на этом участке не действует, и мы имеем марковскую СМО типа М/М/n с неограниченной по длине очередью, и, следовательно, можно использовать полученные ранее выражения вероятностей P . Необходимо заметить что до сих пор наши рассуждения были достаточно строгими, но это предположение требует проверки. Итак:

( 7.13 )

Теперь рассмотрим случай к>n. В отличие от предыдущего простым рассуждением найти вероятность распределения времени занятости каналов не удается из-за многообразия комбинаций занятости и очередей. Поэтому воспользуемся готовым результатом:

 

????????????

 

Теперь необходимо найти P0. Сделаем это, как обычно, исходя из нормирующего условия:

= + = 1, ( 7.14 )

где - вероятность того, что все каналы заняты

 

( 7.15 )

Входящий в это выражение n-мерный интеграл можно выразить через табличный:

( 7.16 )

Задача решена, и с помощью полученных распределений можно вычислять характеристики исследуемой СМО.

Вероятность отказа вычисляется по формуле:

( 7.17 )

Распределение времени обслуживания:

( 7.18 )

 

Среднее время ожидания в очереди:

( 7.19 )

 





Поделиться с друзьями:


Дата добавления: 2016-10-27; Мы поможем в написании ваших работ!; просмотров: 978 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2488 - | 2300 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.