Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M £ f(x) £ M.
Доказательство этого свойства основано на том, что функция, непрерывная в точке х0, ограничена в некоторой ее окрестности, а если разбивать отрезок [a, b] на бесконечное количество отрезков, которые “стягиваются” к точке х0, то образуется некоторая окрестность точки х0.
Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения.
Т.е. существуют такие значения х1 и х2, что f(x1) = m, f(x2) = M, причем
m £ f(x) £ M
Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx).
Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.
Свойство 3: (Вторая теорема Больцано – Коши). Функция, непрерывная на отрезке [a, b], принимает на этом отрезке все значения между двумя произвольными величинами.
Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак.
Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.
Т.е. если sign(f(a)) ¹ sign(f(b)), то $ х0: f(x0) = 0.
Теорема о непрерывности дифференцируемой функции
Теорема. Если функция y=f(x) дифференцируема в некоторой точке x0, то она в этой точке непрерывна.
Таким образом,из дифференцируемости функции следует ее непрерывность
Доказательство. Если , то
,
где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δ x →0. Но тогда
Δ y = f '(x 0) Δ x +αΔ x => Δ y →0 при Δ x →0, т.е f(x) – f(x 0 ) →0 при x → x 0, а это и означает, что функция f(x) непрерывна в точке x 0. Что и требовалось доказать.
Производная функции в точке
Определение. Производной функции f в точке х0 называется число, к которому стремится разностное отношение
при Δх, стремящемся к нулю.
Производная функции f в точке х0 обозначается f`(х0)
Функцию, имеющую производную в точке x0, называют дифференцируемой в этой точке. Пусть D1 - множество точек, в которых функция f дифференцируема. Сопоставляя каждому x∈D1 число f`(x), получим новую функцию с областью определения D1. Эта функция называется производной функции y=f(x) и обозначается f` или y`.
Нахождение производной данной функции f называется диффиренцированием