Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Исследование функций с помощью производных




5. Выяснить, является ли функция возрастающей (убывающей) и найти области возрастания (убывания) функции можно, используя теоремы:

Если функция f(x), имеющая производную на отрезке [a, b] возрастает на этом отрезке, то ее производная на отрезке [a, b] неотрицательна, т.е. f `(x) ³ 0.

Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b), причем f `(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Если f(x) убывает на отрезке [a, b], то f `(x) £ 0 на этом отрезке.

Если f `(x) < 0 в интервале (a, b), то f(x) убывает на отрезке [a, b].

Полагаем, что f(x) непрерывна на [a, b] и дифференцируема на (a, b).

Геометрическая интерпретация: если функция возрастает, то касательная к ее графику образует острый угол с осью Ох; если функция убывает – угол наклона касательной – тупой.

 

5. Экстремумы. Говорят, что функция f(x) имеет максимум (max) в точке х0, если значение функции в этой точке больше, чем значения во всех точках малой окресности ее, т.е. если при достаточно малом h > 0 выполняются неравенства: f(x0 – h) < f(x0) и f(x0 + h) < f(x0).

Функция f(x) имеет минимум (min ) в точке х0, если значение функции в этой точке меньше, чем значения во всех точках малой окрестности ее, т.е. если при достаточно малом h > 0 выполняются неравенства:

f(x0 – h) > f(x0) и f(x0 + h) > f(x0).

Максимум (минимум) функции называется ее экстремумом. Точки максимума (минимума) – точками экстремума функции.

Рассмотрим метод отыскания экстремумов.

Необходимое условие существования экстремума можно сформулировать так: Если функция f(x) в точке х0 имеет экстремум, то производная f `(x0) обращается в нуль или не существует.

Это означает, что функция может иметь экстремум только в этих точках, но может и не иметь его в них. Точки эти (в которых производная равна нулю или не существует) называются критическими точками первого рода.

Достаточное условие экстремума можно сформулировать так:

Если х0 – критическая точка функции f(x) и при произвольном достаточно малом h > 0 выполняется неравенство f `(x0 – h) > 0, f `(x0 + h) < 0, то функция f(x) имеет в точке х0 максимум; если f `(x0 – h) < 0, a f `(x0 + h) > 0, то функция f(x) в точке х0 имеет минимум. (Если знаки f `(x0 – h) и f `(x0 + h) одинаковы, то функция f(x) в точке х0 экстремума не имеет). (Наличие экстремума можно определить и с помощью второй производной. Если , a то в точке имеет экстремум- max, если и min, если .)

Отметим, что: а) функция, определенная на отрезке, может достигать экстремума только во внутренних точках этого отрезка; б) экстремум функции не обязательно является наибольшим (наименьшим) значением функции на рассматриваемом отрезке.

5. Наибольшее и наименьшее значения функции, непрерывной на отрезке [a, b] можно отыскать, выбрав их из значений функции на концах и в критических точках внутри этого отрезка.

4. Выпуклость и вогнутость графика функции.

Говорят, что кривая y = f(x) выпукла на интервале (a, b), если все точки ее лежат ниже любой ее касательной, проведенной на этом интервале, (вогнутой – если все ее точки лежат выше любой касательной, проведенной на этом интервале). Условия выпуклости (вогнутости) графика функции на интервале (a, b) можно сформулировать так: Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, т.е. f ``(x) < 0, то кривая y = f(x) на этом интервале выпукла; если вторая производная положительна, т.е f ``(x) > 0 – кривая вогнута.

Выпуклость и вогнутость графика функции наглядно иллюстрируются удобным для запоминания “ правилом дождя ”, поясняемым рис. 3.3. Заключается оно в следующем: если вторая производная отрицательна, то говорят, что “ нет дождя ” – случай а) на рисунке, кривая y1 = f1(x) – выпукла, «струи дождя» скатываются с выпуклой кровли и под ней сухо.

Рис. 3.3
Если вторая производная положительна, то говорят, что «есть дождь» – случай б) на рисунке – кривая y2 = f2(x) вогнута и «струи дождя» собираются в чаше.

Точка, отделяющая вогнутую часть графика от выпуклой, называется точкой перегиба. Можно доказать справедливость утверждения: Если f ``(а) = 0 или f ``(a) не существует и при переходе через значение х = а, f ``(x) меняет знак, то точка кривой y = f(x) с абсциссой х = а есть точка перегиба.

В этой формуле объединены необходимое (равенство нулю или «несуществование» второй производной в некоторой точке) и достаточное (перемена знака второй производной) условия наличия точки перегиба.

Точки, в которых выполняются указанные необходимые условия, называются критическими точками второго рода.

Отметим, что интервалы выпуклости и вогнутости могут быть разделены и точкой разрыва функции, не являющейся точкой перегиба.

5. Асимптоты. Прямая L называется асимптотой кривой y = f(x), если расстояние точки М(х, у) кривой от прямой L стремится к нулю при неограниченном удалении этой точки по кривой от начала координат (т.е. при стремлении хотя бы одной из координат точки к бесконечности).

Прямая х = а является вертикальной асимптотой кривой y = f(x), если или (подразумевается, что исследуются и левый и правый пределы, т.е. и ).

Прямая у = b является горизонтальной асимптотой кривой y = f(x), если существует предел или .

Ри.3.4  
В общем случае кривая может иметь и наклонную асимптоту, уравнение которой можно записать в виде y = kx + b. Определим значения k и b с помощью рис.3.4 М(х, у) – точка на кривой, N(x, y) – точка на асимптоте. Отрезок МР – расстояние от точки М до асимптоты. По определению . Из треугольника MNP определим . Т.к. j = arctg к – постоянная,

то и . Но NM = |y – `y| = |f(x) – . При постоянном b , и, следовательно, , откуда . Зная k находим b: . Т.о. прямая y = kx + b является наклонной асимптотой кривой y = f(x), если существуют пределы (3.36) и (3.37)

или (3.36`) и (3.37`).

(Если хотя бы один из каждых двух пределов не существует, то кривая наклонных асимптот не имеет).

Рекомендуемая схема построения графиков по характерным точкам:

1. Найти область определения функции.

2. Исследовать функцию на четность и нечетность.

3. Найти точки пересечения графика функции с осями координат.

4. Исследовать функцию на непрерывность, найти (если они существуют) точки разрыва и установить характер разрыва; найти асимптоты кривой.

5. Найти интервалы возрастания и убывания функции и ее экстремумы.

6. Найти интервалы выпуклости и вогнутости кривой и точки ее перегиба.

Отметим, что иногда порядок исследования целесообразно выбирать, исходя из особенностей функции. Может быть пополнен и перечень исследуемых характеристик (например вопросом о периодичности функции).

Тесты

1.22. Функция возрастает на интервале:

1) (0; ¥); 2) (-¥; 0) и (0; ¥); 3) (-¥; 0); 4) (-3; 3).

1.23. Функция убывает на:

1) ; 2) ; 3) ; 4) .

1.24 Имеет ли функция экстремум и, если да, то в каких точках?

1) х = ±2; 2) х = 0; 3) х = ± е; 4) х = -8.

1.25. Имеет ли функция экстремум и, если да, то в каких точках?

1) х = 0; 2) х = е; 3) х = 1; 4) х = е -1.

1.26. Функция на отрезке [0; 3] наибольшее значение принимает в точке:

1) х = -1; 2) х = 0; 3) х = 1; 4) х = 3.

1.27. ; Имеет ли график точки перегиба и, если да, то:

1) ; 2) ; 3) ; 4) .

1.28. ; Имеет ли график этой функции асимптоты и, если да, то:

1) Вертикальную;

2) Горизонтальную;

3) наклонную.

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 3181 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2016 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.