Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные теоремы о пределах




1. Предел алгебраической суммы двух, трех и вообще определенного числа переменных равен алгебраической сумме пределов этих переменных, т.е.

lim (u1 + u2 + … + un) = lim u1+ lim u2+ … + lim un

2. Предел произведения определенного числа переменнных равен произведению пределов этих переменных, т.е.

lim (u1 × u2 × … × un) = lim u1 × lim u2 × … × lim un

3. Предел частного двух переменных равен частному пределов этих переменных, если предел знаменателя отличен от нуля, т.е. если lim V ¹ 0.

4. Если для соответствующих значений функций u = u(x), z = z(x), v = v(x) выполняются неравенства u £ z £ v и при этом u(x) и v(x) при х ® а (или х ® ¥ ) стремятся к одному и тому же пределу b, то z = z(x) при х ® а (или х ® ¥) стремится к тому же пределу.

 

Теорема 4 позволяет доказать справедливость важного соотношения, называемого первым замечательным пределом. (2.1)

Из (2.1) следует эквивалентность бесконечно малых х и sin x: sin x ~x.

Удобно пояснить это графически. На рис. 2.3 приведены графики функций у = х и у = sinх. Легко видеть, что чем меньше х отличается от нуля, тем меньше отличие ординат (значений функций) соответствующих графиков, а при х = 0 они совпадают. (Это позволяет с высокой точностью при очень малых х определять приближенное значение sin x).

Еще одно важное соотношение теории пределов, называемое вторым замечательным пределом имеет вид: (2.2)

Число е – иррациональное (также как и число p) и может быть записано в виде бесконечной десятичной непериодической дроби е = 2,71828…; играет важную роль в вычислительной математике, служа, в частности, основанием натурального логарифма, обозначаемого ln x = logex. Функцию у = ех называют экспоненциальной функцией (иногда обозначается как ехр х). В решении задач теории пределов могут быть полезны следующие равенства: . Можно также заменять бесконечно малые

величины эквивалентными им:

Непрерывность функций. Функцию у = f(х) называют непрерывной в точке а если:

1.Эта функция определена в некоторой окрестности точки а и в самой точке;

2.Существует предел функции и он равен значению функции в этой точке, т.е. . Можно предложить и иное определение. Пусть аргумент х0 получит приращение и примет значение х = х0 + Dх. В общем случае функция также получит некоторое приращение Dу = f(х0 + Dх) – f(х0).

Функцию f(х) называют непрерывной в точке х0, если она определена в этой точке и некоторой окрестности ее и если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, т.е.

(2.3) или (2.3`)

Приведем формулировку теоремы: Всякая элементарная функция непрерывна в каждой точке, в которой она определена и получим важное для решения задач теории пределов следствие. Запишем условие непрерывности в виде или, что тоже самое, . Но и, следовательно, (2.4), т.е. для любой непрерывной функции во всех точках области определения ее справедливо соотношение (2.4) – предел функции равен функции предела (символы (и соответствующие операции) предела и функции можно поменять местами): .

Пример:

В ряде случаев удобно использовать следующее соотношение:

.

Говорят, что если функция f(x) непрерывна в каждой точке некоторого интервала (а, b), где a < b, то функция непрерывна на этом интервале. Точка внутри или на границе области определения, в которой нарушается условие непрерывности, называется точкой разрыва. Если существуют конечные пределы и , причем не все три числа b1, b2 и f(a) равны между собой, точка а называется точкой разрыва первого рода. Эти точки подразделяются на точки скачка, когда b1 ¹ b2 (скачок равен b2 - b1) и точки устранимого разрыва, когда b1 = b2. Точки разрыва, не являющиеся точками разрыва первого рода, называются точками разрыва второго рода. В этих точках не существует хотя бы один из односторонних пределов (Пример – “бесконечный” разрыв: ).

Рассмотрим некоторые свойства непрерывных функций (доказательства теорем можно найти в рекомендуемой литературе).

1. Если функция f(x) непрерывна на некотором отрезке [a, b], то на этом отрезке найдется по крайней мере одна точка х = х1 такая, что значение функции в этой точке будет удовлетворять соотношению f(x1) ³ f(x), где х – любая другая точка отрезка, и найдется по крайней мере одна точка х2 такая, что значение функции в этой точке будет удовлетворять соотношению

 
Рис.2.4
f(x2) £ f(x). Значения f(x1) = М и f(x2) = mнаибольшее и наименьшее значения функции f(x) на этом отрезке. Поясним с помощью рис. 2.4, на котором представлены графки трех непрерывных на [a, b] функций у1, у2 и у3. Легко видеть, что на интервале [a, b] функция у1 один раз достигает наибольшего М и наименьшего m значений. Функция у2 во всех точках [a, b] имеет одно и то же значение – оно одновременно и наибольшее и наименьшее. Функция у3 на [a, b] дважды принимает наибольшее М и наименьшее m значения. Но хоть один раз наибольшее и наименьшее значения принимает каждая из них!

(Отметим, что на интервале (а, b) утверждение теоремы может оказаться неверным. Пример: у = х – функция не имеет на интервале (а, b) наибольшего и наименьшего значений, т.к. не достигает значений а и b!)

х
2. Если функция f(x) непрерывна на отрезке [a, b] и принимает на концах этого отрезка значения разных знаков, то между точками a и b найдется по крайней мере одна точка х = с, в которой функция обращается в нуль. (Это значит, что график функции хотя бы раз пересечет ось Ох в пределах этого отрезка; х = с – как раз такая точка). На рис. 2.5: графики функций у1 и у2 таковы, что на концах интервала [a, b] их ординаты (значения функций) различны. При этом график у1 пересекает ось Ох один раз, а график у2 – три раза, но хоть один раз – каждый из них.

3. Если функция f(x) определена и непрерывна на отрезке [a, b] и на концах этого отрезка принимает неравные значения f(a) = A и f(b) = B то, каково бы ни было число m, заключенное между числами А и В, найдется такая точка х = с, заключенная между a и b, что f(c) = m (легко видеть, что теорема 2 является частным случаем теоремы 3).

Следствие: Если функция f(x) непрерывна на некотором интервале и принимает на нем наибольшее и наименьшее значения, то на этом интервале она принимает по крайней мере один раз любое значение, заключенное между ее наибольшим и наименьшим значениями.

Тесты

1.4. Функция является бесконечно большой при:

1) ; 2) ; 3) ; 4) .

1.5. Функция является бесконечно малой при:

1) ; 2) ; 3) ; 4) .

1.6. Эквивалентными (бесконечно малыми) при будут:

1) и ; 3) и ;

2) и ; 4) и .

1.7. Какой из пределов называют «вторым замечательным»:

1) ; 3) ;

2) ; 4) .

1.8. Функция в точке х = -1:

1) Непрерывна;

2) Испытывает разрыв 2го рода;

3) Испытывает разрыв 1го рода.

1.9. Если непрерывная функция на концах отрезка [ а; в ] принимает значения разного знака, то ее график:

1) пересекает ось Х один раз;

2) не пересекает ось Х;

3) пересекает ось Х хотя бы один раз.

Производная.

Рассмотрим функцию у = f(x) определенную на некотором интервале. Дадим аргументу х приращение . Новому значению аргумента х + Dх будет, в общем случае, соответствовать новое значение функции f (x + Dх), т.е. функция также получит некоторое приращение

Dу = f (x + Dх) – f (x). Составим отношение . Если существует, то его называют производной данной функции и обозначают y` (или f`(x) или dy / dx). Иногда используют обозначение у`х – индекс показывает, по какому аргументу берется производная.

(3.1) или (3.1`)

Производной данной функции y = f(x) по аргументу х называют предел отношения приращения функции к приращению аргумента , когда последнее произвольным образом стремится к нулю. В общем случае производная также является некоторой функцией от х. (f`(x) = j(x)). Конкретное значение производной при х = а обозначают f `(а) или у`/х = а. Операцию нахождения производной называют дифференцированием функции.

Понятие производной (и соответствующий математический аппарат) широко используются в различных прикладных задачах. Пример: Известно, что средняя скорость движения тела определяется выражением V = s / t (s = s (t) – путь пройденный телом, t время движения). Очевидно, что мгновенную скорость можно найти, как (механический смысл производной). Рассмотрим геометрическую интерпретацию.

Рис. 3.1
Возьмем на графике функции y = f(x) (рис.3.1) произвольные точки М0(х, у) и М1(х + Dх, у + Dу) и проведем секущую М0М1. Очевидно, что угол наклона секущей к оси Ох определяется выражением . Если точка М1 приближается к точке М0, то секущая поворачивается вокруг точки М0 (при этом Dх ® 0) и в пределе занимает положение касательной к графику функции, проведенной через точку М0.

Угол наклона касательной определится выражением .

Геометрический смысл производной очевиден: Значение производной f`(x) при данном значении аргумента х равняется тангенсу угла наклона касательной к графику функции f(x) в соответствующей точке М(х, у). Это, с учетом (1.36), позволяет записать уравнение касательной к кривой у = f(x) в точке 0, у0) в виде у – у0 = f `(x0)(x – x0) (3.3).

Говорят, что если функция y = f(x) имеет производную в точке х = х0, т.е. если существует предел , она дифференцируема в этой точке. Если функция дифференцируема в каждой точке некоторого отрезка (интервала), говорят, что она дифференцируема на отрезке (интервале).

Теорема. Если функция у = f(х) дифференцируема в некоторой точке, то она в этой точке непрерывна. Действительно, если , то , где g – бесконечно малая величина, т.е. . Но тогда Dу = f `(x0) Dx + gDx, откуда следует, что Dу ® 0 при Dх ® 0 и функция f(x) непрерывна в точке х0. Очевидно, в точках разрыва функция не может иметь производной. Это не значит однако, что если функция непрерывна в точке х0, то она дифференцируема в ней. Рассмотрим функцию, график которой представлен

на рисунке. Функция непрерывна во всех точках [a, b]. Однако в точке с к графику функции можно провести две различные касательные, т.е. в этой точке первая производная не существует (испытывает разрыв) и функция непрерывна, но не дифференцируема.

Рассмотрим функцию в точке х = 0. , т.е. в точке х = 0 рассматриваемая функция непрерывна, но не дифференцируема.

Рассмотрим производные основных элементарных функций. Пусть у = х2. Очевидно Dу = (x + Dx)2 – х2 = 2xDx + D2 х и , т.е. если у = х2, то у` = 2х. Рассуждая аналогично, несложно доказать, что производная функции у = хn, где n – целое положительное число, равна nxn–1, т.е. если у = хn, то у` = nхn–1 (3.4). Эта формула, как будет показано ниже, верна и в случае любого действительного n. Приведем без доказательств следующие утверждения:

Если у = sinx, то y` = cosx (3.5) Если у = cosx, то y` = – sinx (3.6)

Производная постоянной равна нулю, т.е. если у = с, где с – постоянная, то с` = 0 (3.7)

Постоянный множитель можно выносить за знак производной, если у = c f(x), где c = const, то y` = cf `(x) (3.8).

Производная суммы конечного числа дифференцируемых функций равна сумме производных этих функций, т.е. если , то (3.9)

( – символ суммы индексированных (нумерованных) величин, где i – текущий индекс, к и n – нижний и верхний пределы суммы – т.е. номера первой и последней складываемых величин.)

Производная произведения двух дифференцируемых функций равна произведению производной первой функции на вторую плюс произведение первой функции на производную второй, т.е. если у = uv, то

y` = u`v + uv` (3.10).

Производная дроби (частного от деления двух функций) равна дроби, знаменатель которой есть квадрат знаменателя данной дроби, а числитель есть разность произведений производной числителя на знаменатель и производной знаменателя на числитель, т.е. если y = u / v, то (3.11).

Используя приведенные соотношения можно получить производные других элементарных функций и составить таблицу производных. Приведем их, опуская доказательства.

Если у = logax, то (3.12). Очевидно, (3.12`)

Если y = tg x, то (3.13) Если y = сtg x, то (3.14)

Если у = ах (a > 0), у` = ахln a (3.15) и х)` = ex (3.15`)

Рассмотрим особенности нахождения производной от сложной функции - функции вида у = F(u), где u = f(x), или у = F(f(x). Переменную u называют промежуточным аргументом.

Теорема: Если функция u = f(x) имеет в некоторой точке х производную ux` = f `(x), а функция y = F(u), имеет при соответсвующем значении u производную y`u = F(u), то сложная функция у = F(f(x)) в указаной точке х также имеет производную y`х = F`u(u)f `(x) или y`x=y`uu`x (3.16)

(Иначе – производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента).

Пример: y = sin x2 => y = sin u, u = x2, используя (3.16). (3.5) и (3.4) получим: y`u = cos u, u`x = 2x, y`x = 2xcos x2.

Приведенное правило позволяет получить производную неявной функции т.е. функции, заданной уравнением F(x, y) = 0 (3.17).

(Отметим, что если в (3.17) удастся привести уравнение к виду у = f (х), то функция оказывается заданной в явном виде. Операция эта осуществима далеко не всегда).

Пример: F(x, y) = sin (x + y) – e(x – y) = 0. Дифференцируя обе части равенства по х и помня, что у есть функция от х, получим:

В некоторых случаях, прежде чем найти производную, бывает удобно прологарифмировать уравнение, задающее функцию. Пусть у = хn. Прологарифмировав обе части равенства, получим ln y = n ln x, откуда для произвольного действительного n. Выражение называют логарифмической производной. (Отметим, что логарифмическое дифференцирование удобно применять при нахождении производных от произведения большого количества функций и показательно-степенных функций).

Найдем производную обратной функции. Пусть y = f(x) возрастающая или убывающая функция, определенная на некотором интервале (a, b), (a < b). (Если большему значению аргумента соответствует большее значение функции (f(x2) > f(x1) при x2 > x1) ее называют возрастающей. Если f(x2) < f(x1) при x2 > x1 функция убывающая). Для определенности (без потери общности) рассмотрим возрастающую функцию. Из определения ее очевидно, что значения х и у связывает взаимно однозначное соответствие. Рассматривая у как аргумент, а х как функцию, свяжем их значения соотношением х = j(у). Эта функция является обратной для функции y = f(x), а функция y = f(x) обратной для х = j(у). Эти функции имеют один и тот же график и функция х = j(у) находится как решение уравнения y = f(x) относительно х. Отметим, что:

1. Если возрастающая (убывающая) функция непрерывна на отрезке [a, b], причем f(a) = c, f(b) = d, то обратная функция определена и непрерывна на отрезке [c, d];

2. Если функция y = f(x) не является ни возрастающей, ни убывающей на некотором интервале, то она может иметь несколько обратных функций (однозначных).

Пример: у = х2 на интервале (–¥, ¥) не является ни возрастающей, ни убывающей и имеет две обратные функции: (0 £ х < ¥) и (- ¥ < х < 0).

Теорема: Если для функции y = f(x) существует обратная функция х = j(у), которая в рассматриваемой точке у имеет производрую j`(у) отличную от нуля, то в соответствующей точке х функция y = f(x) имеет производную f `(x) равную 1 / j`(у), т.е. справедлива формула

f`(x) = 1 / j`(у) (3.18).

Используя полученное правило, пополним таблицу производных:

Если y = arcsin x, то (3.19) Если y = arccos x, то (3.20)

Если y = arctg x, то (3.21) Если y = arcctg x, то (3.22)

Примеры:

Используя (3.11) найдем:

(Напомним, что sin2x + cos2x=1; sin2x = 2sinx cosx)

у = хх. Прологарифмировав обе части равенства по основанию е получим lnу = xlnx. Продифференцировав обе части равенства, найдем (lny)` = (xlnx)` => y`/ у = lnx + 1 => y` = xx (lnx + 1).

Выведем фомулу (3.19). Итак, y = arc sin x => sin y = sin arc sin x => x = sin y. Воспользуемся (3.18):

В ряде случаев функциональную зависимость (линию, поверхность) удобно задавать в параметрической форме: каждая неизвестная (координата точки) представляется функцией параметра t, причём каждому значению параметра соответствуют координаты некоторой точки (значения неизвестных, удовлетворяющих обычному уравнению зависимости); и т.д. (Пример - параметрические уравнения прямой в разделе 1.7.1)

(От параметрического задания функции легко перейти к привычному , исключив из уравнений параметр t - разрешив уравнение (1) относительно t и подставив его в (2)). Производная функции, заданной параметрически, определяется выражением:

Рассмотрим понятие производных высшего порядка. Производную от функции y = f(x) (ее называют первой), обозначаемую y` = f`(x) = dy / dx можно рассматривать как новую (по отношению к f(x)) функцию той же переменной. Эта функция, в свою очередь, может быть продифференцирована, т.е. найдена первая производная от первой производной исходной функции f(x); (y`)`=(f`(x))`. Она называется второй производной, обозначается y`` = f ``(x) = d2y / dx2 и является производной высшего (второго) порядка. Очевидно, что таким же образом может быть определена производная n–го порядка (n Î Z), обозначаемая y(n) = f(n)(x) (n – берется в скобках, чтобы не путать с показателем степени). Иногда порядок производной обозначают римскими цифрами.

 

Дифференциал.

Если функция y = f(x) дифференцируема на некотором отрезке, то производная принимает определенные значения. Отношение Dу/Dх при Dх ® 0 можно представить в виде где a ® 0 при Dх ® 0. Умножая равенство на получим Dу = f `(x) Dx + aDx. В общем случае f`(x) ¹ 0 и произведение f `(x) Dх есть величина бесконечно малая одного порядка с , а aDх – бесконечно малая высшего порядка. Первое из двух слагаемых (f`(x) Dх) называют главной частью приращения функции, линейной относительно , или дифференциалом функции и обозначают dy = f `(x) Dх.

Пусть у = х. Очевидно, что dy = dx и дифференциал независимого переменного совпадает с приращением и можно записать dy = f`(x)dx (3.24).

Производную функции f`(x) = dy / dx можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

То, что в выражении Dу = dy + aDx второе слагаемое является бесконечно малой более высокого порядка, позволяет в приближенных вычислениях использовать следующий алгоритм:

Dу» f `(х)Dх => f (х+Dх) – f (х) @ f `(x) Dх => f (x + Dх) @ f(x) + f `(x) Dх (3.25.),

причем вычисления тем точнее, чем меньше величина .

 

Пример: Вычислим приближенное значение sin460; 460 = 450 + 10 = p/4 + p/180; Из (3.25) очевидно, что sin(x + Dх)» sin x + Dх cosx и sin 460 = sin (p/4 + p/180) @ sin p/4 + (p/180)cos p/4» 0,7194.

Рис. 3.2
Из (3.24) следует, что большинство теорем и формул, относящихся к производной, справедливы и для дифференциалов. Так

d(u + v) = du + dv (3.26), d(uv) = vdu + udv (3.27) и т.д.

Геометрический смысл дифференциала легко уяснить из рис. 3.2. Возьмем на кривой у = f(x) произвольную точку М(х, у) и проведем касательную. Приращению аргумента соответствует приращение функции и точка М1(х + Dх, у + Dу). Из треугольника МNT находим NT = MN tg a = Dх f `(x) = dy (по определению дифференциала), т.е. геометрически дифференциал представляет собой приращение ординаты касательной к графику функции в точке М (х,у).

Аналогично тому, как определяются производные высших порядков, определяются и их дифференциалы. Дифференциал от дифференциала называют дифференциалом второго порядка (вторым дифференциалом) и обозначают d(dy) = dy2. По определению дифференциала d2y = [f `(x) dx]`dx = f``(x)(dx)2, так как dx от х не зависит. Очевидно, таким же образом определяется дифференциал любого порядка dny = f(n)(x)(dx)n; принято записывая порядок дифференциала опускать скобки, т.е окончательно общее выражение примет вид

dny = f(n)(x)dxn (3.24').

Тесты

1.10. Если точка в некоторой точке непрерывна, то она в этой точке:

1) Может быть дифференцируема;

2) Дифференцируема;

3) Не дифференцируема.

1.11. Если функция в точке дифференцируема, то она в этой точке:

1) испытывает разрыв;

2) может быть непрерывна;

3) Непрерывна.

1.12. Если , то у ' =

1) ; 2) ; 3) .

1.13. Если , то у ' =

1) ; 2) ; 3) .

1.14. , у ''' =

1) ; 3) ;

2) ; 4) .

1.15. ; у ' =

1) ; 3) ;

2) ; 4) .

1.16. ; d 3 x =

1) ; 3) ;

2) ; 4) .





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 740 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2491 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.016 с.