Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 3: Аналітична геометрія. 10. Задані координати кінців відрізка і




10. Задані координати кінців відрізка і . Скласти рівняння прямих, що проходять через точку паралельно і перпендикулярно до відрізка .

11. Знайти рівняння траєкторії точки , що рухається так, що відстань від точки залишається вдвічі меншою відстані від прямої.

12. Побудувати лінії, які задані рівняннями.

а) б) в)


Варіант №5.

Контрольна робота №1:

«Елементи лінійної алгебри й аналітичної геометрії»

Тема 1: Лінійна алгебра.

1. Обчислити визначники: 1) 2)

2. Обчислити обернену матрицю до матриці . Перевірити правильність обчислень, використовуючи означення оберненої матриці.

3. Обчислити ранг матриці.

4. Розв’язати системи лінійних алгебраїчних рівнянь: методом Крамера, методом Гауса і засобами матричного обчислення (там, де це можливо):

а) б) в)

5. Дослідити на сумісність СЛАР і, у випадку позитивної відповіді, знайти її розв’язок.

Тема 2: Векторна алгебра.

6. Написати розвиненя вектора за векторами , і .

, , ,

7. Чи колінеарні вектори і , побудовані на векторах і ?

, , ,

8. Знайти косинус кута між векторами і .

, ,

9. Задані координати вершин піраміди. За допомоги векторної алгебри знайти: 1) довжину ребра ; 2) кут між ребрами и ; 3) площу грані ; 4) об’єм піраміди . .

Тема 3: Аналітична геометрія.

10. Задані вершини трикутника , і . Скласти рівняння висоти і медіани, проведених з вершини .

11. Фокуси гіперболи знаходяться в точках і . Гіпербола проходить через точку . Знайти рівняння її асимптот і кут між ними.

12. Побудувати лінії, які задані рівняннями.

а) б) в)


Варіант №6.

Контрольна робота №1:

«Елементи лінійної алгебри й аналітичної геометрії»

Тема 1: Лінійна алгебра.

1. Обчислити визначники: 1) 2)

2. Обчислити обернену матрицю до матриці . Перевірити правильність обчислень, використовуючи означення оберненої матриці.

3. Обчислити ранг матриці.

4. Розв’язати системи лінійних алгебраїчних рівнянь: методом Крамера, методом Гауса і засобами матричного обчислення (там, де це можливо):

а) б) в)

5. Знайти множину розв’язків однорідної системи 3-х лінійних рівнянь з чотирма невідомими.

Тема 2: Векторна алгебра.

6. Написати розвиненя вектора за векторами , і .

, , ,

7. Обчислити площу паралелограма, побудованого на векторах і ,якщо кут між векторами і дорівнює . , , , ,

8. Чи компланарні вектори , і ?

, ,

9. Задані координати вершин піраміди. За допомоги векторної алгебри знайти: 1) довжину ребра ; 2) кут між ребрами и ; 3) площу грані ; 4) об’єм піраміди . .

Тема 3: Аналітична геометрія.

10. Задані рівняння 3-х сторін трикутника , і . Скласти рівняння висоти .

11. На гіперболі знайти точку, відстань якої від лівого фокуса вдвічі менша, ніж від правого.

12. Побудувати лінії, які задані рівняннями.

а) б) в)


Варіант №7.

Контрольна робота №1:

«Елементи лінійної алгебри й аналітичної геометрії»

Тема 1: Лінійна алгебра.

1. Обчислити визначники: 1) 2)

2. Обчислити обернену матрицю до матриці . Перевірити правильність обчислень, використовуючи означення оберненої матриці.

3. Обчислити ранг матриці.

4. Розв’язати системи лінійних алгебраїчних рівнянь: методом Крамера, методом Гауса і засобами матричного обчислення (там, де це можливо):

а) б) в)

5. Дослідити на сумісність СЛАР і, у випадку позитивної відповіді, знайти її розв’язок.

Тема 2: Векторна алгебра.

6. Написати розвиненя вектора за векторами , і .

, , ,

7. Чи колінеарні вектори і , побудовані на векторах і ?

, , ,

8. Знайти косинус кута між векторами і .

, ,

9. Задані координати вершин піраміди. За допомоги векторної алгебри знайти: 1) довжину ребра ; 2) кут між ребрами и ; 3) площу грані ; 4) об’єм піраміди . .





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 333 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2176 - | 2135 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.