Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определенный интеграл и его свойства




 

Пусть функция определена на отрезке . Разобьем отрезок на n частей точками , выберем на каждом элементарном отрезке произвольную точку xk и обозначим через длину каждого такого отрезка.

Интегральной суммой для функции на отрезке называется сумма вида

Определение: Определенным интегралом от функции на отрезке называется предел интегральной суммы при условии, что длина наибольшего из элементарных отрезков стремится к нулю:

Для любой функции , непрерывной на отрезке , всегда существует определенный интеграл

Простейшие свойства определенного интеграла

 

1) Определенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определенных интегралов от слагаемых функций:

2) Постоянный множитель можно выносить за знак определенного интеграла

3) При перестановке пределов интегрирования определенный интеграл меняет знак на противоположный:

4) Определенный интеграл с одинаковыми пределами равен нулю:

5) Отрезок интегрирования можно разделить на части:

с -точка, лежащая между а и b.

6) Если на отрезке , то .

Для вычисления определенного интеграла от функции , в том случае, когда можно найти соответствующую первообразную , служит формула Ньютона-Лейбница:

= F(b)-F(a)

Рассмотрим нахождение простейших определенных интегралов.

Пример 1: Вычислить определенный интеграл .

Решение: =

 

Пример 2: Вычислить определенный интеграл: .

Решение:

.

 

Математический анализ. Дифференциальные уравнения

 

Определение: Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные или дифференциалы различных порядков, называется дифференциальным уравнением.

.

Определение: Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение.

(Например, y΄sinx + ytgx = 1 - первого порядка;

- второго порядка.

Определение: Функция y =φ(x), удовлетворяющая дифференциальному уравнению, называется решением этого уравнения. Решение дифференциального уравнения, содержащее столько независимых произвольных постоянных, каков порядок уравнения, называется общим решением этого уравнения.

Для уравнения 1-го порядка: y = φ(x, C)

2-го порядка: y = φ(x, C1, C2)

Определение: Функции, получаемые из общего решения при различных числовых значениях произвольнх постоянных, называются частными решениями этого уравнения.

Определение: Задача на нахождение частного решения дифференциального уравнения при заданных начальных условиях называется задачей Коши.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 12887 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2429 - | 2175 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.