Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Математический анализ. Дифференциальное исчисление




Линейная алгебра

 

Понятие и формы записи комплексных чисел

Комплексным числом называется выражение вида , i - символ, называемый мнимой единицей и обладающий свойством . Действительные числа x и y называются действительной и мнимой частями комплексного числа и обозначаются через Re z и Im z соответственно.

Всякое комплексное число может быть изображено точкой M(x,y) с абсциссой x и ординатой y в координатной плоскости, называемой комплексной(см. рис. 1).

Рис. 1

 

Число называется модулем комплексного числа , обозначается символом |z| и равно расстоянию от начала координат О до точки M, изображающей число z.

Угол φ между положительным направлением оси Оx и вектором называется аргументом Arg z комплексного числа . При этом если движение от оси Ox осуществляется против часовой стрелки, и в противном случае. Значения Arg z определяется неоднозначно, с точностью до слагаемых, кратных . Поэтому из всех значений Arg z выбирается главное значение, которое лежит в интервале и обозначается через arg z.

Главное значение arg z вычисляется по формуле

 

Пример 1 Для числа имеем

Запись называется алгебраической формой числа z. Из прямоугольного треугольника OAM (см. рис. 1) получаем Таким образом, справедливо равенство

представляющее тригонометрическую форму числа z. Обозначив символом выражение , получаем показательную форму комплексного числа z

Например,

Пример 2 Дано комплексное число . Требуется записать число в алгебраической, тригонометрической и показательной формах

1. Найдем алгебраическую форму числа a:

. Числу a соответствует точка М(-1; ), изображенная на рис. 2.

Рис. 2

Найдем модуль и аргумент числа а

,

Тогда тригонометрическая и показательная формы числа а определяются равенствами

 

Основы дискретной математики

Теория множеств

Множество – это совокупность элементов, представляющих между собой единое целое. Имеют место различные операции над множествами. Через обозначается отношение принадлежности, т.е. х А означает, что элемент х принадлежит множеству А. Если х не является элементом множества А, то это записывается х А. Два множества А и В считаются равными, если они состоят из одних и тех же элементов. Мы пишем А=В, если А и В равны, и А ≠ В в противном случае. Через обозначается отношение включения множеств, т.е. А В означает, что каждый элемент множества А является элементом множества В. В этом случае А называется подмножеством В, а В — надмножеством А. Если А В и А≠В, то А называется собственным подмножеством В и в этом случае пишем A B. Множество, не содержащее элементов, называется пустым и обозначается через 0. Семейство всех подмножеств данного множества А обозначается через Р(А). Объединением множеств А и В называется множество A B={x │ x А или х В}. Пересечением множеств А и В называется множество А В={x │ х А и х В} Разностью множеств Аи В называется множество А\В={х │ х А и х В}. Кроме того встречается обозначение «–А», которое подразумевает краткую запись U\A, где U – универсум, то есть множество, включающее в себя все другие множества. Тогда «- А» будем считать дополнением к множеству А.

Диаграммы Венна (круги Эйлера - Венна) используются для наглядного изображения множеств. Например:

A B А В A B А\В

Пример 1. Используя диаграммы Эйлера – Венна докажите равенство:

Построим диаграммы для левой и правой частей уравнения:

Выполним по порядку действий левую часть: а) , б)

Аналогично в правой части: а) , б) в)

Получив две одинаковые фигуры в ответе, будем считать, что равенство доказано.

Математический анализ. Дифференциальное исчисление

 

Понятие производной

Определение: Производной функции по аргументу x называется предел отношения ее приращения к приращению аргумента x, когда приращение аргумента стремится к нулю:

.

Если этот предел конечный, то функция y=f(x) называется дифференцируемой в точке x. Если же этот предел есть ∞, то говорят, что функция y=f(x) имеет в точке x бесконечную производную.

 

Механический смысл производной: скорость есть первая производная пути по времени, т.е. .

Геометрический смысл производной: тангенс угла наклона касательной к графику функции равен первой производной этой функции, вычисленной в точке касания, т.е.

Уравнение касательнойк графику функции в точке :

Уравнение нормали к графику функции в точке :

Таблица производных

 

 

   

 

Процесс нахождения производных называется дифференцированием функции.

 

Рассмотрим примеры.

Найти производные функций:

Пример 1:

Решение:

+

Пример2:

Решение:

Пример 3:

Решение:

Дифференциал функции

 

Определение: Дифференциалом функции y=y(x) называется произведение ее производной на дифференциал независимой переменной:

.

 

Для большей наглядности рассмотрим пример.

 

Пример 1: Найти дифференциал функции

Решение:

Так как , то .

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 670 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.