Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Генеральная совокупность и выборка. Вариационный ряд. Гистограмма,




Опр.1. Выборкой наз совокупность случайно отобранных объектов.

Опр.2 Генеральной совокупностью наз совокупность объектов, из которых производится выборка. Объемом сов-ти наз число объектов этой совокупности.

Опр.3. Ряд распределения – это упорядоченное распределение единиц совокупности на группы по к.-л. признаку. Вариационным рядом (в.р.) наз группировка сов-ти по количественному признаку, т.е. это ряд распределения, сгруппированный по колич. Признаку.

В.Р. будет дискретным, если он остроен подискретному признаку и непрерыным, если – по непрерывному.

В случае непрерывного признака целесообразно строить гистограмму. На оси Ох строятся интервалы, над которыми строятся прямоугольники с высотой, равной частоте (относительной частоте) соответствующего интервала.

 
 

 

 


 

Площадь гистограммы равна сумме всех частот, т.е. объему выборки.(в случае относительных частот = 1).

Эмпирическая ф-я распределения.(э.ф.р.)

Опр. Э.Ф.Р. (ф-й распределения выборки) наз ф-ю F*(х), определяющую для каждого значения х относительную частоту события Х<х: F*(х)=nx/n, nxчисло вариант, меньших х, n- объем выборки.

Выборочная средняя

Опр. Выборочной средней Хв(над Х необходимо рисовать черточку) наз среднее арифметическое значение признака выборочной совокупности. Если все значения х12,…,хn различны, то

Хв=(х1+х2+…+ хn)/n.

Если значения признака х12,…,хk имеют соответственно частоты n1,n2,…,nk, причем n1+n2+…+nk =n, то

Хв=(∑i=1knixi)/n, т.е. выборочная средняя есть средняя взвешанная значений признака с весами, равными соответствующим частотам.

Выборочная дисперсия.

Выборочной дисперсией Dв наз среднее арифметическое квадратов отклонений наблюдаемых значений признака от их среднего значения Хв (с чертой).

Если все значения х12,…,хn различны, то

Dв=(∑i=1n(xi – xв)2)/n

Если значения признака х12,…,хk имеют соответственно частоты n1,n2,…,nk, причем n1+n2+…+nk =n, то Dв=(∑i=1kni(xi – xв)2)/n, т.е. выборочная дисперсия есть средняя взвешанная квадратов отклонений с весами, равными соответствующим частотам.

5. Статистические оценки: несмещенные, эффективные, состоятельные

Рассматривая x1, x2, …, xn как независимые случайные величины

X1, X2, …, Xn, можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения – это значит найти функцию от наблюдаемых случайных величин, которая и дает приближенное значение оцениваемого параметра.

Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин.

Пусть Θ* - статистическая оценка неизвестного параметра Θ теоретического распределения.

Несмещенной называют статистическую оценку Θ*, математическое ожидание которой равно оцениваемому параметру Θ при любом объеме выборки, т. е.

М(Θ*) = Θ.

Возможные значения Θ* могут быть сильно рассеяны вокруг своего среднего значения, т. е. дисперсия D (Θ*) может быть значительной Þ существует возможность допустить большую ошибку. По этой причине к статистической оценке предъявляется требование эффективности.

Эффективной называют статистическую оценку, которая (при заданном объеме выборки n) имеет наименьшую возможную дисперсию.

Состоятельной называют статистическую оценку, которая при n ® ¥ стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при n ® ¥ стремится к нулю, то такая оценка оказывается и состоятельной.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 452 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2260 - | 2183 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.