Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Комплексные числа и действия с ними




Введение

Данное пособие написано для того, чтобы помочь студентам, обучающимся на факультете заочного и дистанционного обучения по направлению «Электроэнергетика и электротехника» и профилю «электрооборудование и электрохозяйство предприятий, организаций и учреждений», в изучении линейной и векторной алгебры, аналитической геометрии, а также в выполнении контрольных работ по высшей математике по соответствующим темам: № 1, №2, №3.

В пособии содержатся три раздела, в каждом из которых имеется необходимый теоретический материал, пример выполнения соответствующей контрольной работы и задания для самостоятельного выполнения в десяти вариантах. Номер варианта определяется по последней цифре зачётной книжки (шифра).

Работу следует выполнять в тонкой ученической тетради в клетку. Выполненную работу следует снабдить титульным листом, образец которого можно найти на доске объявлений у деканата.

Поскольку пособие содержит достаточно большой теоретический материал, полезно сохранить его до конца обучения в вузе, так как он может быть востребован при дальнейшем изучении математики и других дисциплин.

Раздел 1. Контрольная работа по высшей математике №1

Теоретический материал по линейной алгебре

Комплексные числа и действия с ними

Под комплексным числом в алгебраической форме записи понимается выражение где и – действительные числа, а – мнимая единица, для которой справедлива формула

Числа вида отождествляются с действительными числами, числа вида называются чисто мнимыми. Сопряженным числом к числу называется комплексное число Два комплексных числа и равны, если и

Сложение, вычитание, умножение и деление комплексных чисел определяются следующим образом.

1)

2)

3)

Примечание. Формулу умножения двух комплексных чисел не обязательно запоминать, так как она получается, если формально перемножить двучлены и по обычному правилу умножения двучленов и затем заменить на –1.

Примеры.

1. Найти сумму и произведение комплексных чисел и

Находим сумму:

Умножим:

2. Найти частное комплексных чисел и

Для нахождения частного умножим числитель и знаменатель дроби на число, сопряженное знаменателю:

Комплексное число можно изобразить точкой на плоскости имеющей координаты На оси изображаются действительные числа, поэтому она называется действительной осью; на оси расположены чисто мнимые числа; она называется мнимой осью.

Можно также сопоставить числу вектор, направленный из начала координат в точку Длина этого вектора , т.е. расстояние от начала координат до точки называется модулем комплексного числа и обозначается

Из рисунка находим Следовательно:

Такая форма записи комплексного числа называется тригонометрической. Угол , образованный радиус-вектором с положительным направлением действительной оси называется аргументом комплексного числа и обозначается . В инженерных приложениях угол также называется фазой. Величина угла определяется с точностью до слагаемого Главным называется значение , удовлетворяющее условию: .

Главное значение аргумента можно вычислить по следующим формулам:

Пусть – любое действительное число. Символом обозначается комплексное число С помощью этого обозначения всякое комплексное число может быть записано в показательной форме (формула Эйлера):

Пример. Представить в тригонометрической и показательной форме комплексное число

Находим модуль Аргумент находим по формуле:

.

Следовательно

Матрицы и действия с ними

Матрица представляет собой прямоугольный массив чисел, образующих строки и столбцы одинаковой длины.

Для краткого обозначения матриц применяются латинские буквы A, B, C и т.д. Если в матрице m строк и n столбцов, то говорят, что матрица имеет размер . В общем виде элементы матрицы принято обозначать латинскими буквами a, b, c и т.д. Элемент, стоящий в i -той строке (т.е. в строке с номером i) и j -том столбце (т.е. столбце с номером j), обозначается и т.д. Учитывая введенные обозначения, произвольная матрица А может быть записана так:

.

Кроме больших круглых скобок, массив чисел, образующих матрицу может быть заключен в большие квадратные скобки или ограничен сдвоенными чертами. Многоточие в записи означает, что за элементом следуют элементы и т.д. до ; за элементом следуют элементы и т.д. до элемента . Элементами матрицы могут быть любые действительные и комплексные числа.

Если в матрице число строк и столбцов совпадает, т.е. , то матрица называется квадратной, а число указывает порядок матрицы.

Направление из левого верхнего в правый нижний угол квадратной матрицы называется главной диагональю, а элементы — диагональными элементами. Их сумма , кратко обозначаемая , называется следом матрицы . Направление, перпендикулярное главной диагонали, называется побочной диагональю.

Если в квадратной матрице все элементы, стоящие выше или ниже одной из диагоналей, равны 0, например,

то такие матрицы называются треугольными.

Если равны 0 все элементы, кроме стоящих на главной диагонали, то такая матрица называется диагональной:

.

Если все диагональные элементы равны 1, то такая матрица называется единичной:

.

Матрица, не обязательно квадратная, все элементы которой равны 0, называется нулевой.

Матрица, состоящая из одного столбца, называется матрицей-столбцом, матрица, состоящая из одной строки, называется матрицей-строкой.

Две матрицы называются равными, если они одного размера и все соответствующие элементы совпадают.

Под нормой матрицы А понимается действительное число , аналогичное понятию модуля для действительных чисел. Из элементов матрицы А ее норму можно составить различными способами, в дальнейшем за норму будем принимать корень квадратный из суммы квадратов всех элементов матрицы:





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 544 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2309 - | 2123 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.