Термодинамический метод исследования циклов
Тепловых двигателей
Основными задачами термодинамического метода исследования циклов тепловых двигателей являются:
- определение величины подведенной q 1 и отведенной q 2 теплоты, а также работы цикла l ц;
- определение эффективности преобразования подведенной к рабочему телу теплоты q 1 в работу цикла l ц, т.е. определение термического КПД цикла η t и факторов, на него влияющих;
- оценка путей повышения эффективности цикла.
Превращение теплоты в работу в циклах реальных двигателей связано с рядом сложных физических, химических и газодинамических процессов (горение топлива, теплоотдача от рабочего тела в стенки двигателя, течение вязкого газа в различных элементах двигателя и др.). Они изучаются в теории авиационных двигателей.
В технической термодинамике проводятся изучение и исследование идеальных циклов тепловых двигателей. В них реальные процессы заменяются идеальными. При идеализации циклов обычно принимаются следующие допущения:
1) процессы, составляющие цикл, являются обратимыми, т.е. l трен и другие диссипативные явления отсутствуют;
3) рабочее тело в цикле обладает неизменным химическим составом, если это газ, то он считается идеальным;
4) реальный процесс горения топлива заменяется обратимым процессом подвода теплоты извне;
5) цикл считается замкнутым, процесс смены рабочего тела не рассматривается, а заменяется обратимым процессом отвода теплоты от рабочего тела в окружающую среду.
Максимально возможная степень преобразования теплоты в работу цикла достигается в цикле Карно, который осуществляется в том же интервале температур, что и в исследуемом цикле.
Совершенство произвольного обратимого цикла оценивается тем, насколько его термический КПД отличается от термического КПД цикла Карно, осуществляемого в то же интервале крайних температур. Эту оценку выполнить сложно, т.к. трудно вычислить ηt произвольного цикла. Поэтому пользуются следующими методами сравнения эффективности циклов.
а) Графический метод сравнения циклов в T,s – координатах
В этих координатах (рис. 6.1) наглядно изображаются теплоты и ,
входящие в выражение для .
Рис. 6.1. Графический метод сравнения циклов |
Сравним произвольный цикл abcd, осуществляемый в интервале температур Т max и Т min с циклом Карно 1234 в этом же интервале температур. Из графика видно, что в произвольном цикле < , а > . Следовательно , поэтому больше произвольного цикла.
б) Метод сравнения циклов путем сравнения средних температур подвода и отвода теплоты в цикле.
Для анализируемого цикла можно записать , . Следовательно, , a .
Если анализируемый цикл заменить циклом Карно в интервале температур и , то термический КПД такого цикла будет ниже, чем термический КПД цикла Карно в интервале температур , т.е. меньше, чем .
Таким образом, чем выше в исследуемом цикле и ниже , тем выше его термический КПД и тем ближе он к циклу Карно, осуществляемом в интервале температур .
6.2. Цикл газотурбинных двигателей – цикл Брайтона
Данный цикл называется также циклом с подводом теплоты при постоянном давлении (рис. 6.2 а и 6.2 б).
От исходного состояния 1 рабочее тело сжимается в адиабатном процессе 1-2. Далее в изобарном процессе 2-3 к нему подводится извне теплота . Затем происходит адиабатное расширение рабочего тела в процессе 3-4 до давления р 4, равного исходному давлению р 1. Отвод теплоты происходит в замыкающем цикл изобарном процессе 4-1, в результате чего рабочее тело возвращается в исходное состояние 1.
Для исследования цикла Брайтона необходимо задать:
- род рабочего тела (k, R) и его параметры и в исходной точке цикла 1;
- степень повышения давления в адиабатном процессе сжатия
и степень подогрева рабочего тела в цикле
Рис. 6.2. Цикл Брайтона |
Определим температуру рабочего тела в характерных точках 2, 3 и 4 данного цикла. При этом для упрощения записей введём обозначение e = Тогда
Определим подведённую и отведённую в цикле теплоту. Для изобарного процесса 2-3
Для изобарного процесса 4-1 =
Тогда термический КПД цикла Брайтона равен
или
Отсюда видно, что значение термического КПД цикла Брайтона зависит от рода рабочего тела (k) и степени повышения давления в цикле p (рис. 6.3).
Рис. 6.3 | Рис. 6.4 |
Увеличение p является одним из основных средств повышения и, следовательно, экономичности тепловых машин, работающих по циклу Брайтона.
Практически все современные воздушно-реактивные и газотурбинные двигатели работают по циклу Брайтона. У авиационных двигателей значение p в наземных условиях достигает 25…30, а в полёте и того более.
Найдём выражение для работы цикла
.
Как видно, работа цикла зависит от рода рабочего тела (k, R), его начальной температуры Т 1, степени повышения давления и степени подогрева рабочего тела в цикле. С ростом , Т 1 и работа цикла растёт.
Работа цикла обращается в нуль при двух значениях , соответствующих e = 1 и e = (рис. 6.4). Следовательно, между этими крайними значениями p имеется некоторое оптимальное значение , при котором работа цикла максимальна. Для определения продифференцируем формулу для по e и приравняем производную нулю: = 0.
Отсюда получим = или =
Как видно, для данного рабочего тела величина в идеальном цикле Брайтона зависит только от степени подогрева . С увеличением увеличивается и значение l и .
Следует отметить, что при термический КПД цикла не достигает максимального значения. В области значений > он продолжает увеличиваться с ростом p, но величина работы цикла при этом будет уменьшаться и достигнет нулевого значения при =
При работа цикла при увеличении Δ линейно возрастает.
Рассмотренный цикл Брайтона реализуется в ряде типов существующих двигателей. В авиации это турбореактивные (рис. 6.5) и турбовинтовые двигатели (рис. 6.6), а также вертолётные газотурбинные двигатели (рис. 6.7). Цикл Брайтона применяется, кроме того, в турбостартёрах и в газотурбинных установках (ГТУ), используемых как вспомогательные силовые установки на тяжёлых самолётах различного назначения.
Рис. 6.5. Схема ТРДД | Рис. 6.6. Схема ТВД | Рис. 6.7. Схема ТВаД |
Применительно к ТРД (рис. 6.5) идеальный цикл Брайтона протекает следующим образом. Рабочее тело (воздух) поступает в двигатель из атмосферы через входное устройство. Адиабатный процесс сжатия воздуха 1-2 (рис. 6.2) происходит во входном устройстве и в компрессоре. С ростом скорости полёта повышение давления во входном устройстве становится всё более значительным, и параметры воздуха на входе в компрессор значительно отличаются от атмосферных параметров (точка в на рис. 6.2). В камере сгорания при постоянном давлении происходит сгорание топлива (процесс 2-3) и к воздуху подводится теплота . Продукты сгорания (газ) с параметрами p , T поступают в газовую турбину, которая служит для привода компрессора. Адиабатное расширение газа (процесс 3-4) происходит в турбине и сопле. Состояние газа за турбиной изображено на рис. 6.2 точкой Т. При расширении в турбине часть энергии газа преобразуется в работу на валу турбины, которая передаётся компрессору. При расширении в сопле происходит разгон потока и он в виде газовой струи с большой скоростью вытекает в атмосферу. Изобарный процесс 4-1 соответствует охлаждению в окружающей атмосфере горячих продуктов сгорания, вытекающих из двигателя, с отводом теплоты
Вертолётные ГТД (рис. 6.6) и ТВД (рис. 6.7) используются на летательных аппаратах, предназначенных для полета с дозвуковой скоростью. Поэтому повышение давления во входных устройствах этих двигателей практически не происходит, и сжатие воздуха осуществляется только в компрессоре. У этих двигателей только часть работы турбины затрачивается на привод компрессора. Значительная часть её передаётся через редуктор на воздушный винт. Поэтому у ТВД и вертолётных ГТД процесс расширения продуктов сгорания происходит в турбине практически до атмосферного давления и через выходное устройство они отводятся в атмосферу.