Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Многофакторный дисперсионный комплекс




Ясное представление о математической модели дисперсионного анализа облегчает понимание необходимых вычислительных операций, особенно при обработке данных многофакторных опытов, в которых больше источников варьирования, чем в простых, однофакторных опытах. Например, в двухфакторном опыте, поставленном методом обычных повторений, сумма квадратов для вариантов CV расчленяется на три, а в трехфакторном – на семь компонентов. Общая сумма квадратов для этих опытов будет представлена следующими выражениями (в скобках указаны суммы квадратов для изучаемых факторов A, В, С и их взаимодействия):

CY = (СА + СВ + САB) + СZ (15.1)

CY = (СА + СВ + СC + САB+ САC + СBC+ СABC) + СZ (15.2)

Соответственно указанным компонентам варьирования результативного признака разлагают и общее число степеней свободы.

Многофакторный дисперсионный комплекс – это совокупность исходных наблюдений, позволяющих статистически оценить действие и взаимодействие нескольких изучаемых факторов на изменчивость результативного признака. Эффект взаимодействия составляет ту часть общего варьирования, которая вызвана различным действием одного фактора при разных градациях другого. Специфическое действие сочетаний в эксперименте выявляется тогда, когда при одной градации первого фактора второй действует слабо или угнетающе, а при другой градации он проявляется сильно и стимулирует развитие результативного признака.

В эксперименте часто эффект от совместного применения изучаемых факторов больше (синергизм) или меньше (антагонизм) суммы эффектов от раздельного применения каждого из них. Следовательно, существует взаимодействие факторов: в первом случае положительное, а во втором – отрицательное. Когда факторы не взаимодействуют, прибавка от совместного применения их равна сумме прибавок от раздельного воздействия (аддитивизм).

Дисперсионный анализ данных многофакторного комплекса проводится в два этапа. Первый этап – разложение общей вариации результативного признака на варьирование вариантов и остаточное: CY = CV + CZ. На втором этапе сумма квадратов отклонения для вариантов разлагается на компоненты, соответствующие источникам варьирования – главные эффекты изучаемых факторов и их взаимодействия. В двухфакторном опыте:

CV = CA + СB + CAB, (15.3)

в трехфакторном:

CV = CA + СB + СC + CAB + CAC + CBC + CABC. (15.4)

Дисперсионный анализ двухфакторного анализа по изучению градаций фактора А (число вариантов lA) и градаций фактора В (число вариантов lB), проведенного в n повторностях, осуществляется в следующие этапы:

1 Определяются суммы и средние по вариантам, общая сумма и средний урожай по опыту.

2 Вычисляются общая сумма квадратов отклонений, сумма квадратов для вариантов и остатка:

N = lA × lB × n; (15.5)

; (15.6)

; (15.7)

; (15.8)

(15.9)

Для вычисления сумм квадратов по факторам А, В и взаимодействию АВ составляется вспомогательная таблица, в которую записываются суммы по вариантам. Суммируя цифры, находятся суммы А, суммы В и вычисляются суммы квадратов отклонений для главных эффектов и взаимодействия.

Сумма квадратов для фактора А:

(15.10)

при ( lА – 1 ) степенях свободы.

Сумма квадратов для фактора В:

(15.11)

при ( lВ – 1 ) степенях свободы.

Сумма квадратов для взаимодействия АВ находится по разности:

(15.12)

при (lА – 1)×(lВ – 1) степенях свободы.

Суммы квадратов записывают в таблицу дисперсионного анализа и определяют фактические значения критерия F (таблица 15.1).

Таблица 15.1 – Результаты двухфакторного дисперсионного анализа

Вариация Сумма квадра-тов Число степеней свободы Дисперсия Критерий Фишера, Fфакт Уровень значимос-ти, p Критерий Фишера, Fтабл
Фактора А            
Фактора В            
Взаимодейст-вия            
Случайная            
Общая            

 

Преобразования

Правильное использование дисперсионного анализа для обработки экспериментального материала предполагает однородность дисперсий по вариантам (выборкам), нормальное или близкое к нему распределение варьирующих величин, значения которых получают независимо одно от другого. В исследованиях независимость сравнения достигается рендомизированным размещением вариантов в опыте и случайным отбором проб в выборку. Когда есть основания предполагать неоднородность дисперсий по выборкам, о чем обычно свидетельствуют большие различия в варьировании по вариантам, то рекомендуется преобразовать (трансформировать) исходные данные. Трансформация дает возможность уменьшить пределы варьирования, устранить неоднородность дисперсий по выборкам и провести сравнение результатов более точно.

Наиболее подходящие и чаще всего применяемые преобразования следующие:

- логарифмические, когда каждое значение X трансформируется в lgX или в ln (X – l), если некоторые наблюдения равны нулю;

- трансформация данных подсчета численности путем извлечения квадратного корня из X, т. е. или , когда некоторые наблюдения дают нулевые или очень небольшие значения.

Преобразованные значений обрабатываются по схеме дисперсионного анализа и после проведенных оценок переходят обратно к первоначальным единицам измерения. Средние, полученные в процессе преобразования, будут несколько отличаться от средних, полученных по исходным данным, но разница обычно не велика, и более правильным средним будет значение, полученное обратным переходом.





Поделиться с друзьями:


Дата добавления: 2016-10-07; Мы поможем в написании ваших работ!; просмотров: 994 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2333 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.