Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


П 2.3. Статистический метод исследования




Статистические закономерности – количественные закономерности, устанавливаемые статистическим методом, в котором рассматриваются лишь средние значения величин, характеризующих данную совокупность молекул (рассматривается конкретная молекулярная модель, и к ней применяются математические методы статистики, основанные на теории вероятностей).

Вероятность термодинамическая – число способов, которыми может быть реализовано данное состояние макроскопической физической системы (предел, к которому стремится относительная частота появления некоторого события при достаточно большом, стремящемся к бесконечности числе повторений опыта при неизменных внешних условиях):

w=n/N,

где N – число опытов;

n – число раз получено определенное событие.

Флуктуации – случайные отклонения физических величин от их среднего значения.

Средняя квадратичная скорость молекул ( для газа массой "m" находящегося в состоянии равновесия, при T = const) остаётся постоянной:

или ,

где Ni – число молекул, обладающих скоростью vi;

N – число всех молекул.

Наиболее вероятная скорость – скорость движения молекул, которая характеризует положение максимума функции распределения Максвелла:

Средняя арифметическая скорость:

Относительная скорость применяется для расчета числа молекул, движущихся со скоростями в интервале от v до v + dv:

u=v/vв.

Закон распределения молекул идеального газа по скоростям в стационарном состоянии (распределение Максвелла):

где dnv – среднее число молекул в единице объема со скоростями в интервале от v до v+dv;

n – число молекул в единице объема.

Функция распределения (доля молекул от их общего числа отнесена к некоторому интервалу скоростей):

или

где dnv/ndv – функция распределения.

Свободные пробеги молекул – прямолинейные участки траектории, проходимые молекулой между двумя последовательными соударениями.

Средняя длина свободного пробега молекулы – среднее расстояние, проходимое молекулой между двумя соударениями:

где Z – число соударений;

<v> – средняя скорость молекулы;

k – постоянная Больцмана;

<d> – диаметр молекулы;

p – давление;

T – абсолютная температура.

Среднее число соударений <z> – число соударений молекул, численно равное отношению средней скорости движения молекул <v> к средней длине свободного пробега:

, или

Эффективный диаметр молекулы d – минимальное расстояние, на которое сближаются при столкновении центры 2–х молекул.

Эффективное сечение – величина равная

s=pd2.

Барометрическая формула показывает, что давление убывает с высотой тем быстрее, чем тяжелее газ и чем ниже его температура:

Закон распределения молекул газа по высоте в поле сил тяготения (распределение Больцмана):

, ,

где no – число молекул в единице объема в том месте, где потенциальная энергия молекул равна нулю;

n – число молекул в единице объема в тех точках пространства, где потенциальная энергия молекул равна Wp.

Распределение Максвелла–Больцмана – благодаря этому распределению можно определить долю молекул идеального газа, имеющих скорости в интервале от v до v+dv и обладающих потенциалом c=gh во внешнем силовом поле:

,

где vв – наиболее вероятная скорость, значению которой соответствует максимум кривой Максвелла.

Зависимость плотности газа от высоты:

; ,

где mo – масса одной молекулы.





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 370 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2279 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.