Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Абсолютные и относительные величины




Т?Министерство образования Российской Федерации

ГОУ ВПО «Российская экономическая академия имени Г.В.Плеханова»

С.Г. Бабич

 

 

ОБЩАЯ ТЕОРИЯ СТАТИСТИКИ. 1 КУРС. 2 СЕМЕСТР

(КУРС ЛЕКЦИЙ)

Москва 2004

Лекция №1

Статистика – это общественная наука, изучающая массовые явления и процессы, происходящие в обществе, а также экономические и социальные условия жизни общества. Все явления и процессы, изучаемые статистикой в конкретных условиях места и времени, в непрерывном развитии и взаимосвязи друг с другом.

Объектами статистических исследований являются массовые экономические и социальные явления и процессы, происходящие в обществе. Предметом статистики являются размеры и уровни изучаемых явлений и процессов. Статистика создает и анализирует количественные и качественные характеристики изучаемых явлений и процессов в их непрерывном развитии и взаимосвязи друг с другом. Глобальной задачей статистики является подготовка и представление полной и достоверной информации о состоянии и развитии экономики страны. Более конкретными задачами являются:

  1. Внедрение в практику международных правил учета и статистики.
  2. Совершенствование статистической информации в условиях рыночной экономики.
  3. Укрепление отчетной дисциплины.

Главным статистическим органом нашей станы является ГОСКОМСТАТ РФ. Он осуществляет управление статистическим отчетом и отчетностью во всех отраслях экономики и несет полную ответственность за создание и функционирование статистической информационной системы на общегосударственном, отраслевом и региональном уровнях.

Курс статистики состоит из следующих разделов:

1. Общая теория статистики

2. Математическая статистика

3. Социально-экономическая статистика

4. Отраслевая статистика (финансовая, международная и т. д.)

Исходным понятием статистики является понятие статистической совокупности, под которой понимают массовое явление, изучаемое в данный момент статистикой (например: население страны). Каждая статистическая совокупность состоит из отдельных элементов, которые называют единицами статистической совокупности (для населения – человек, семья, население какого-нибудь региона, национальность и т. д.). Каждая единица совокупности обладает определенными свойствами. Признаком в статистике называют свойство или качество единицы совокупности, которое может быть определено или измерено (для человека – пол, рост, возраст, вес и т. д.). Признаки подразделяются на количественные и качественные (атрибутивные). Каждая единица совокупности имеет определенное значение признака. Изменение величины признака от одной единицы совокупности к другой в статистике называют вариацией признака. По характеру, вариации признака подразделяются на множественные (принимающие различные значения) и альтернативные (принимающие только 2 значения).

В любом статистическом исследовании выделяют 3 этапа:

1. статистическое наблюдение

2. сводка и группировка

3. расчет обобщающих показателей и анализ полученных данных.

Статистическое наблюдение представляет собой систематизированный и научно обоснованный сбор первичных статистических данных об изучаемом явлении путем регистрации индивидуальных значений признака у отдельных единиц совокупности. Основной задачей статистического наблюдения является получение в возможно короткие сроки полной и достоверной информации об изучаемом явлении. На практике применяют 2 организационные формы статистического наблюдения:

1. Статистическая отчетность, при которой юридические и физические лица по установленной форме в установленные сроки предоставляют необходимую информацию в статистические органы.

2. Специально организованное наблюдение, которое проводится либо для проверки данных статистической отчетности, либо для получения данных, по которым статистическая отчетность не предоставляется (пример: перепись населения).

Различают следующие виды статистического наблюдения:

1. По охвату единиц совокупности – сплошное и не сплошное. В свою очередь, не сплошное подразделяется на выборочное, основного массива и монографическое.

2. По основанию для регистрации признака – непосредственное, документальное и опрос.

3. По характеру регистрации признака во времени – прерывное и непрерывное.

Для правильной организации статистического наблюдения утверждают программу, в которой устанавливают цели и задачи наблюдения, определяют объект и единицу наблюдения, выбирают вид и способ наблюдения, место и время его проведения, устанавливают круг лиц ответственных за проведение наблюдения и сроки предоставления необходимой информации.

Сводка – это второй этап статистического исследования и заключается в том, что первичные данные, полученные при проведении статистического наблюдения, систематизируются и обобщаются. По технике выполнения сводка бывает ручной и механизированной. На стадии сводки применяется группировка – это метод, при котором вся исходная совокупность делится на группы по какому-то существенному признаку. Признак, лежащий в основании группировки, называют группировочным.

Различают простую и сложную сводку. При простой сводке производится только подсчет итогов по всей совокупности в целом. При сложной - разделение исходной совокупности на группы, подсчет итогов в каждой группе и совокупности в целом, представление полученных данных в виде статистических таблиц.

Если производится группировка единиц исходной совокупности только по первому признаку, то она называется простой, если по второму и более признакам – комбинационной. В зависимости от решаемой задачи различают следующие виды группировок:

1. Типологическая, с помощью которой производится разделение единиц исходной совокупности на количественно-однородные группы (социально-экономические типы) (например: группировка предприятий по формам собственности).

2. Структурная, с помощью которой происходит разделение единиц исходной совокупности на группы, характеризующие ее структуру по какому-то существенному признаку (например: группировка населения по величине среднедушевых денежных доходов).

3. Аналитическая, с помощью, которой изучаются взаимосвязи между различными явлениями или их признаками (например: группировка коммерческих банков по величине уставного капитала, величине прибыли и количеству филиалов).

Важнейшим вопросом группировки является определение количества выделяемых групп. Если в основании группировки лежит качественный (атрибутивный) признак, то количество выделяемых групп определяется самим этим признаком. Если в основании группировки лежит количественный признак, то производят специальные расчеты для определения количества выделяемых групп и величин интервалов группировки.

 

Лекция №2.

Интервалом группировки называют значения варьирующего признака, лежащие в определенных границах (например: размер заработной платы от 5 до 12 тыс. руб.). Минимальное значение интервала называют его нижней гранью, максимальное – верхней гранью. Величина интервала обозначается i и определяется, как разность между верхней и нижней границами в каждом интервале. Интервалы группировки бывают открытые и закрытые, равные и неравные. Закрытым считается интервал, который имеет и нижнюю и верхнюю границы. Если одна из границ отсутствует, то интервал считается открытым. При решении задач открытый интервал группировки закрывают по величине смежного с ним интервала. Если в каждой из выделенных групп величина интервала одинаковая, то такие интервалы считаются равными, в противном случае они считаются неравными. Количество выделяемых групп с неравными интервалами зависит от имеющейся исходной информации и целей исследования. Если вариация признака проявляется в сравнительно узких границах, то производят группировку единиц совокупности с равными интервалами. Количество выделяемых групп с равными интервалами определяется по формуле Стерджесса: n = 1+3,322 * lgN. В этой формуле N – численность единиц исходной совокупности, n – количество выделяемых групп с равными интервалами. При N от 15 до 24: n=5; при N от 25 до 44: n=6; при N от 45 до 89: n=7. Величина равного интервала определяется по формуле: i = (Xmax – Xmin)/n, где Xmax и Xmin соответствуют максимальному и минимальному значениям признака в исходной совокупности, а n - количество выделяемых групп с равными интервалами.

После определения группировочного признака, количество выделяемых групп и величин интервалов группировки, данные представляют в виде рядов распределения. Статистический ряд распределения – это упорядоченное распределение единиц исходной совокупности на группы по какому-то существенному признаку. В зависимости от группировочного признака различают атрибутивные и вариационные ряды распределения. Атрибутивным называется ряд распределения, построенный по количественному признаку. Вариационным называют ряд распределения, построенный в порядке возрастания или убывания количественных значений признака. Схематично, вариационные ряды распределения представлены в виде двух столбцов. В первом столбце приводятся индивидуальные значения признака, их называют вариантами и обозначают через Х. Во втором столбце содержатся: 1) Абсолютные числа, показывающие, сколько раз в исходной совокупности встречается данное значение признака (данный вариант). Такие абсолютные числа называют частотами и обозначают буквой ƒ. Сумма всех частот должна быть равна общей численности единиц исходной совокупности. 2) Относительные числа, показывающие долю (удельный вес) каждой группы в общей численности единиц исходной совокупности. Такие относительные числа называют частостями и обозначают через W. Сумма всех частостей должна быть равна 1 или 100%. Схема вариационного ряда распределения:

X . . . ƒ(W) . . .
Итого .

 

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды распределения. Если значения признака (варианты) представлены в виде целых чисел, то такой вариационный ряд называют дискретным (например: приводится распределение 20 семей по числу детей в них).

Число детей Количество семей
Х ƒ
   
   
   
   
   
Итого  

Дискретные вариационные ряды изображают в виде полигона распределения. Для его построения по оси абсцисс откладываются индивидуальные значения признака (варианты), по оси ординат частоты (частости).

 

Если значения признака (варианты) представлены в виде интервалов, то такой вариационный ряд называется интервальным (например: приводится распределение 30 сотрудников фирмы по размеру месячной заработной платы (тыс. руб.)). Интервальные вариационные ряды изображаются графически в виде гистограммы.

Зарплата Численность сотрудников S
(тыс. руб. мес.), X (кол-во человек), ƒ  
До 10 (от 5)    
10-15    
15-18    
18-25    
Итого    

 

Для ее построения по оси абсцисс откладываются отрезки, длина которых соответствует интервалам группировки. Эти отрезки являются нижним основанием образуемых прямоугольников, а соответствующие частота или частость – соответственно высотой этих прямоугольников. В некоторых случаях интервальный вариационный ряд изображается графически в виде кумуляты. Для ее построения, необходимо накопленные частоты (частости). Они обозначаются S и определяются путем последовательного суммирования частот (частостей), предшествующих интервалу. Вычислим для нашего примера интервального вариационного ряда накопленные частоты (см. ранее в таблице). Накопленная частота показывает сколько единиц исходной совокупности имеют значение признака (вариант) не больше, чем рассматриваемая (например: накопленная частота равна 25, значит, 25 сотрудников из 30 имеют размер зарплаты не более 18 тыс. руб. в месяц). При построении кумуляты вся накопленная частота (частость) интервала, присваивается верхней границе данного интервала. Для построения кумуляты по оси абсцисс откладываются верхние границы интервалов, по оси ординат – накопленные частоты (частости).

 

На практике иногда приходится пользоваться уже имеющимися группировками, которые могут быть несопоставимы по следующим причинам: 1) Неодинаковые границы интервалов группировки. 2) различное количество выделяемых групп. Для привидения таких группировок к сопоставимому виду, применяют метод вторичной группировки. Различают 2 способа вторичной группировки: 1) Способ укрупнения интервалов группировки. 2) Способ долевой перегруппировки, который заключается в том, что за каждой группой закрепляется определенная доля единиц исходной совокупности.

От группировок следует отличать классификации. Особенностями классификаций является то, что в их основу кладется качественный признак. Они устанавливаются органами государственной и международной статистики и остаются неизменными в течение длительного периода времени.

Лекция №3.

Абсолютные и относительные величины.

В результате проведения статистического наблюдения мы получаем первичные данные, которые характеризуют объект нашего исследования. Такие первичные данные называют абсолютными величинами. Абсолютная величина – это количественный показатель, выражающий общую численность, размеры. Уровни и другие характеристики изучаемого объекта. Абсолютные величины могут быть выражены в натуральных, стоймостных и трудовых единицах измерения. В зависимости от того, какую часть исходной совокупности они характеризуют, абсолютные величины подразделяют на индивидуальные, групповые и свободные (совокупные). Результат отношения двух абсолютных величин статистики называют относительной величиной. Различают 7 видов относительных величин:

1. Относительная величина плана (прогноза). Определяется, как отношение планового показателя текущего (отчетного периода) к фактическому показателю предшествующего (базисного) периода и показывает во сколько раз планом предусмотрено изменение изучаемых показателей в текущем периоде по сравнению с предшествующим.

2. Относительная величина выполнения плана. Определяется, как отношение фактического показателя текущего (отчетного) периода к плановому показателю этого же периода и показывает, во сколько раз изучаемый показатель текущего периода изменился по сравнению с планом.

3. Относительная величина динамики. Характеризует изменение изучаемого показателя во времени и определяется как отношение фактического показателя текущего периода к фактическому показателю предшествующего периода.

Между этими тремя перечисленными относительными величинами существует определенная взаимосвязь. Относительная величина динамики должна быть равна произведению относительной величины плана и относительной величины выполнения плана. (ОВд. = ОВпл.* ОВвпл.) Пример: в 2002 году фирмой было выпущено 200 тыс. штук телевизоров, а на 2003 год запланирован выпуск 260 тыс. штук телевизоров. Фактически в 2003 году было выпущено 275 тыс. штук телевизоров.

ОВпл. = 260/200=1,3 (130%)

ОВвпл. = 275/260=1,06 (106%)

ОВд. = 275/200=1,375 (137,5%)

4. Относительная величина структуры. Определяется, как отношение части совокупности ко всей совокупности в целом и, выраженная в процентах, называется удельным весом.

5. Относительная величина координации. Определяется, как отношение двух частей одной и той же совокупности. Как правило, самая маленькая по количественному значению часть выбирается в качестве базы сравнения, и все остальные части исходной совокупности сравнивают с этой выбранной частью. Пример: из общей численности населения РФ на начало 2003 года (145,2 млн. человек): городское население составляет 106,4 млн. чел., сельское – 38,8 млн. чел..

 

ОВстр. = 106,4/145,2=0,73 (73%)

ОВстр. = 38,8/145,2=0,27 (27%)

ОВк = 106,4/38,8 = 2,7

6. Относительная величина сравнения. Определяется, как отношение между двумя одноименными величинами, взятыми за один и тот же период времени, но относящимися к различным совокупностям. Пример: численность российских граждан. Выехавших в 2002 году на постоянное жительство в другие страны характеризуется данными (человек): в Германию – 42231, в Израиль – 2764, в США -3134.

ОВср. = 42231/2764=15,3

ОВср. = 3134/2764=1,1

7. Относительная величина интенсивности. Это единственная из относительных величин, имеющая единицы измерения, причем, они различны в числителе и знаменателе. Относительную величину интенсивности характеризует степень распространения изучаемого явления в определенной среде. Пример: на начало 2003 года численность населения нашей страны составила 145.2 млн. чел.. Территория страны 17,075 млн. км2.

ОВинт. = 145,2 млн. чел./ 17,075 млн. км2 =8,5 чел/км2

Относительные величины интенсивности часто называют показателями уровня экономического и социального развития, т. к. в их число входят: объем ВВП на душу населения в год (руб./чел.), потребление основных продуктов питания на человека в год (кг/чел.), обеспеченность населения жильем (м2/чел.) и т. д.

Средние величины.

Средняя величина является одной из важнейших обобщающих характеристик статистики. В средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами, и находят выражение общие и закономерные черты, свойственные всей совокупности в целом. Индивидуальные значения признака (варианты), из которых вычисляется средняя величина, должны быть одного и того же вида, т. е. должны характеризовать однородные явления и иметь одинаковые единицы измерения.

В каждом конкретном случае средняя величина имеет определенное, социально-экономическое содержание, обусловленное природой изучаемого объекта. Например: Средняя зарплата первого сотрудника определяется путем деления фонда оплаты труда на численность сотрудников. Средний размер вклада в банке определяется путем деления суммы все вкладов.

В статистике вычисляют степенные и структурные средние величины. Общая формула степенных средних величин имеет следующий вид: . В этой формуле Xi – индивидуальное значение признаков (варианты); ƒi – соответствующие частоты (частости); m – показатель степени. Различают следующие виды степенных средних величин: 1) При m = 1 → средняя арифметическая величина. 2) При m = -1 → средняя гармоническая величина. 3) При m = 0 → средняя геометрическая величина. 4) При m = 2 → средняя квадратичная величина. 5) При m = 3 → средняя кубическая величина.

Выбор формулы для расчета средней величины зависит от имеющейся исходной информации.

Средняя арифметическая величина.

Вычисляют простую и взвешенную среднюю арифметическую величину. Формула простой имеет следующий вид: . Эта формула применяется в тех случаях, когда исходные данные не сгруппированы (не образованы в группы пол какому-то признаку) и каждой единице совокупности соответствует определенное значение признака, либо, когда все частоты (частости) равны между собой. Формула средней арифметической взвешенной величины имеет следующий вид: . Эта формула применяется в тех случаях, когда исходные данные сгруппированы, и каждой группе единиц совокупности соответствует определенное значение признака (вариант). Пример: Приводится группировка депутатов фракции «Единство» Государственной Думы по возрасту на 16 января 2002 года:

Возраст депутата (полных лет) (X) Численность депутатов (кол-во человек) (ƒ) Середины интервалов (X) X* ƒ
20-29   24,5 24,5
30-39   34,5  
40-49   44,5  
50-59   54,5  
60-69   64,5 451,5
Итог:      

 

Для расчета средней арифметической величины в интервальном вариационном ряду необходимо: 1) Закрыть имеющиеся открытые интервалы группировки. 2) Найти середины каждого интервала, т. е. привести интервальный ряд к дискретному виду. 3) Найти произведение середин интервалов на соответствующие частоты (частости).

- Средний возраст депутатов данной фракции.

 

Лекция №4





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 528 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2213 - | 1960 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.