Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Проверка статистических гипотез о значениях отдельных коэффициентов




Ранее мы говорили о способе построения доверительного интервала на уровне значимости .

, (3.38)

где – оценка дисперсии ошибки прогноза

, (3.39)

– среднеквадратическое (стандартное) отклонение для b

(3.40)

Полученный результат показывает, что при любом истинном значении параметра вероятность накрытия этого значения доверительным интервалом равна .

Предположим, мы взяли значение , не принадлежащие данному интервалу. Вероятность такого события будет очень мала, меньше чем значение . Таким образом, факт не накрытия значения, взятого значения представляет осуществление редкого события, имеющего малую вероятность, и это дает нам основание сомневаться в том, что значение параметра

Априорные предположения о значениях параметров модели называют статистическими гипотезами.

О проверяемой гипотезе говорят как об исходной «нулевой» гипотезе и обозначают ее Н о, в нашем случае Н о: .

В соответствии со сказанным выше, такую гипотезу следует отвергать, если значение не принадлежит -процентному доверительному интервалу. не будет принадлежать этому интервалу в том случае, если наблюдаемое значение отношения больше табличного по абсолютной величине

. (3.41)

Это означает слишком большое отклонение оценки b от гипотетического значения параметра в сравнении с оценкой стандартного отклонения этого параметра.

Правило решения вопроса об отклонении или не отклонении статистической гипотезы Н о, называется статистическим критерием проверки гипотезы Н о, а выбранное при формулировании этого правила значение α называется уровнем значимости критерия.

В практических исследованиях чаще всего используют, хотя иногда и , и другие. Выбор большего или меньшего значения определяется степенью значимости для исследования исходной гипотезы Н о. Если мы выбираем при исследовании меньшее значение , то мы уменьшаем вероятность ошибки и вероятность отвержения верной гипотезы. Такие вероятности называют мощностью критерия.

В реальных ситуациях статистические критерии имеют довольно низкую мощность, так что рассматриваемая Н о отвергается редко, поэтому правильнее говорить о не отвержении гипотезы, а не о ее принятии.

Всякий статистический критерий основывается на использовании той или иной статистики, то есть, случайной величины, значения которой могут быть вычислены теоретически на основании имеющихся статистических данных (приближенно).

В нашем случае критерий проверки гипотезы Н о: основан на использовании t -статистики , значение которой можно вычислить по

данным наблюдений. Критерии, основанные на использовании t -статистики (распределения) Стьюдента называют t-критериями. Каждому статистическому критерию соответствует критическое множество R значений статистики критерия, при которых гипотеза Н о отвергается в соответствии с принятыми правилами (то есть множество значений t -статистики, превышающих по абсолютной величине ).

Таким образом, статистический критерий определяется заданием

· статистической гипотезы Н о;

· уровня значимости α;

· статистики критерия (t -статистики, χ2-статистики, F -статистики);

· критического множества R.

30. Определение и примеры моделей множественной линейной регрессии. Отбор факторов в модель множественной регрессии.

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии, где y – зависимая переменная (результативный признак), xi – независимые, или объясняющие, переменные (признаки-факторы).

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. Например, потребление отдельного товара на душу населения зависит от располагаемого дохода на душу населения, цены данного товара, цен на сопутствующие товары, привлекательности товара и других факторов.

В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

+31 вопрос





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 609 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2253 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.