Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выбор вида ур-ия регрессии с использ-ем теста Бокса-Кокса




Исп-ие нелин-ых ур-ий для построения ур-ия регрессии значит-но повышает универс-сть регр-го анализа, но и усложняет задачу исслед-ля, т.к. усложняется проблема спецификации ур-ия регрессии. Если мы имеем дело с парной регрессией, то вид ур-ия м.б. решен (выбран) путем построения графика зависимости у = f(x) и по виду этого графика можно дост-но просто выбрать ур-ия. Однако в случае множ-ой регрессии такой подход практич-ки невозможен. В этом случае часто задача решется путем подбора подходящей функции и в качестве критерия оптим-ти используют коэф-т множ-ой детерминации R2, иногда сумма квадратов отклонений. Такой подход неправомерен, если сравниваются принципиально различ-е функц-ые зависимости. Н-р: лин-ая аддитивная модель (1) мультипликтивная модель (2)

Использовать для срав-ия этих моделей сумму кавдратов отклонений невозм-но, т. к. lnyi ≠ yi, а значит-но < его

(3)

Величина R2 также не может быть использ-на, хотя она и безразмерна, т. к. она относ-ся к разным понятиям. В (1) она объясняет дисперсию у, объясн-ую дисперсией факториальных приз-ов (х1 и х2). Во (2) она объясняет дисперсию lny, вызванную дисперсией ln х1 или ln х2. В тех случаях, когда R2 у одной модели значит-но >, чем у другой, тогда можно обоснованно осущ-ть выбор в пользу этой модели. Однако в тех случаях, когда R2 одной и др. модели соизмеримы др.с другом, то проблема выбора усложняется. В этом случае предлагается для выбора исп-ть тест Бокса-Кокса (это в общем случае). Для сравнения моделей (1) и (2) Пол Зарембко предложил упрощение теста Бокса-Кокса в 1968г. Суть теста в этом сл. след-ая:

1) исход-ые данные по у исп-ся для вычисления средней геометрической

2) значение у персчит-ся с исп-ем

3) исп-ие нов. знач-я у находим параметры (оценки) ур-ия (1). А исп-уя ln y’из ур-ия (3) нах-ся оценки ао12.Для этих двух моделей (1) и (3) нах-ся сумма квадратов отклонений. Эти суммы являются сопоставимыми и след-но та модель, которая дает меньшую сумму квадратов отклонений и признается лучшей.

4) для того, чтобы окончат-но решить вопрос, что действительно одна из моделей дает лучшее соответ-ие, рассчит-ся пок-ль: , где Т-число набл-й (n), Z-отнош-е ∑ кв. отклонений в 1 и 2 ур-ии. . Х2расч. сравнив-ся с табличным. Данное стат. распределение им. одну степень свободы и разное знач-е уровня значимости, если Х2расч. > Х2табл. при 5 %-значимости, то действ-но одна из моделей сущ-но лучше другой.

13.1 Общая характеристика временных рядов. Трендовые модели.

Динамич. процессы, происх-ие в эк-их системах чаще всего проявляются в виде ряда послед-но располож-ых в хронолог-ом порядке знач-ий того или иного пок-ля, кот. в своих изменениях отражает ход развития изучаемого явления. Эти знач-я пок-ей могут служить основой для разработки прикладн. моделей особого вида, наз-ых трендовыми моделями. Послед-ть наблюдений одного пок-ля, упорядоч-ая в завис-ти от послед-но возраст-их или убывающих знач-ий др. показ-ля наз. динамическим рядом. Если в кач-ве приз-ка, в завис–ти от кот-го проис-ит упорядочеие, берется время, то такой динамич. ряд наз. временным рядом. Состав-ми элем-ми радов динамики явл. цифровые значения пок-ля, наз-ые уровнем этих радов и моменты или интервал времени, к кот. относ-ся эти уровни. Временные ряды образованные пок-ми. харк-ми эк. явления на опред. моменты времени над. моментными. Если уровни временного ряда образ-ся путем агрегирования за опред-ый промежуток времени, то такие рады наз-ся интервальными врем. Рядами. Врем. Ряды могут быть образованы как из абсолютных знач-й эк. пок-ей, так и из средних относит-ых величин. Эти ряды наз. производными рядами. Под длиной врем. ряда поним-ся время, прошедшее от начала момента набл-ия до конечного. Если во врем. ряду прояв-ся длит-ая тенденция изм-ия эк. пок-ля, то считается, что в этом имеется тренд. След-но под трендом поним-ся изменение, опред-ее общее направ-е развития, т. е. осн. тенденция врем. ряда. След-но, эк-ко-мат-ая динамич-ая модель, в кот. развитие эк. системы отраж-ся через тренд ее осн. показ-ей наз. трендовой моделью. Отличие врем. эк. радов от простых стат. совокуп-ей закл-ся прежде всегов том, что послед-ые знач-я уровня временного ряда зависят друг от друга, т. е. имеется существенная автокорел-ия между уровнями ряда (не остатков, а х). В связи с этим выводы и формулы ТВ и МС могут исп-ся с большей осторожностью. Любой врем. ряд эк. пок-ей можно разложить на 4 составл-ие: , где Т-тренд, S-сезонная сост-ая, С-циклич-ая сост-ая, -случ-ая сост-ая. При построении трендовых моделей необходимо, чтобы дан. Модельсущ-ым образом отражала изменения систематич-их компонент врем. ряда. (Т, S, C). Случ. сост-ая () для адекватных моделей должна подчиняться 4 св-ам Гаусса-Марка (2 лаб. Работа):1) случай-ть колеб-й; 2) мат. ожидание = 0; 3) норм-ый закон распр-ия; 4) независ-ть. - трендовая модель.





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 379 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2015 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.