Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линеаризация уравнения регрессии путем замены переменных




Многие эк-ие явления более лучшим способом, чем лин-ые уравнения, описываются нелин-ми уравнениями. И в этом случае мы не можем применить к ним обычный МНК, и используем станд-ые подходы к оценке стат. надежности. В связи с этим встает задача по возможности привести нелин-ое уравнение к лин-му виду. В тех случаях, когда нелин-ть касается факториальных переменных, но не связана с нелин-тью коэф-ов ур-ия регрессии, нелин-сть обычно устраняется путем замены переменных:

Вводим нов. перемен.: и

След-но , т. е. лин-ое ур-ие.

Во всех случаях, когда можно вычислить нов. перем-ую с использованием инф-ии об исход. перм-ой до опред-ия пар-ов ур-ия регрессии. Метод замены пер-ых решает поставл. задачи линеализацией ур-ия регрессии.

Линеаризация уравнения регрессии с использованием логарфмического преобразования (степенные и показательные функции).

В тех случаях, когда связь между фактор-ми перем-ми и результ-им приз-ом имеет вид степенного ур-ия (мультиколлин-ая функция) линеализация произв-ся путем логарифмирования исх. ур-ия.

Представление случайного члена в преобразованных нелинейных ур-ях регрессии.

(1)

(2)

Если в (1) удовл-ет четырем условиям случайности, т. е. мат. ожид-е =0, независимо др. от друга, то случ. Составляющая во (2) также будет удовл-ть этим усл-ям, и найденные из (2) с пом. МНК оценки параметров будут несмещ-ми, состоят-ми и эффектив-ми оценками. Если будем иметь ур-ие вида: (3), то случ. состав-ая должна входить как сомножитель.

(4)

Четырем усл-ям случайности должен удовл-ть lnδi, а само δi подчин.др. законам. Н-р,

В получаемые с пом. МНК оценки состоятельные и эфектив-ые для ур-ия (4) и все стат. критерии справедливы для лин-го аддитивного ур-ия (4).

Определение параметров нелин-го ур-ия герессии, не приводимого к лин-му ур-ию.

Возьмем ур-ие: .Данное ур-ие не м. б. приведено к лин-му путем замены переменных или логарифмированием. Для оценки парам-ов данного ур-ия также используем метод минимизации суммы квадратов отклонений. Алгоритм нах-ия парам-ов α и b представим в виде послед-ти процедур:

1) примем некоторые правдоподобные исходн. знач-я α и b (α =1÷10, b = 0 ÷ 1,α0 =1,b=0,5)

2) исп-уя эти знач-я, найдем теоретич. знач-я и вычислим

3) вычислим

4)сделаем небольшой шаг по параметру α: Δ α =1+0,1= 1,1 и снова найдем величину μ(2). Если μ(2)< μ(1) , то шаг сделан в правильном направлении.

5) продолжаем увелич-ть α в дан. напр-ии по шагам до тех пор, пока μ не начнет расти.

6) аналогич-ую процедуру проводим с параметром b фиксиров. α.

7) фиксируем найденное b и снова начинаем изменять α. Процедура повтор-ся до тех пор, пока любые измен-ия α и b не будут приводиь к увнлич-ю μ.





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 983 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2253 - | 2076 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.