Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии




Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Спецификация модели включает в себя два круга вопросов: отбор фак­торов и выбор вида уравнения регрессии.

Требования к факторам:1 Они должны быть количественно измеримы. Если необхо­димо включить в модель качественный фактор, не имеющий ко­личественного измерения, то ему нужно придать количествен­ную определенность (например, в модели урожайности качество почвы задается в виде баллов) 2.Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи. Включение в модель факторов с высокой интеркорреляцией, когда Ryx1 Rx1x2 для зависимости y=a+b1x1+b2+...+bpxp+e может привести к нежелательным последствиям, повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются не интерпретированными. Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной.

Выбор формы уравнения

Линейная регрессия

 

• Линеаризуемые регрессии

- Степенная регрессия

 

- Экспоненциальная регрессия

 
 

 


- Гиперболическая регрессия

 

 

Параметры каждого из перечисленных выше уравнений (трендов) можно определить обычным МНК, используя в качестве независимой переменной время t=1,2,..., n, а в качестве зависимой переменной - фактические уровни временного ряда yt. Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэф­фициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни уt и уt-1 тес­но коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, напри­мер, в форме экспоненты, то коэффициент автокорреляции пер­вого порядка по логарифмам уровней исходного ряда будет вы­ше, чем соответствующий коэффициент, рассчитанный по уров­ням ряда. Чем сильнее выражена нелинейная тенденция в изуча­емом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит не­линейную тенденцию, можно осуществить путем перебора ос­новных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации R2 и выбора уравнения тренда с максимальным значением скорректированного коэффи­циента детерминации.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 516 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2261 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.